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Preface 

This book belongs to a growing series of digital signal processing application books that Texas Instruments 
has published over the years. Some of these books are broad in content and cover a wide variety of 
DSP-related technologies and applications. Others are more focused and concentrate on one DSP 
application area. TI has also published many individual application reports. This particular collection of 
application reports focuses primarily on a variety of DSP applications that are related to the field of 
telecommunications and implemented on the 'C5x generation of the TMS320 family. 

This book is divided into nine parts, including the introduction and the bibliography: 
Part I Introduction 

Part I1 Digital Cellular Systems 

Part I11 Speech Synthesis 

Part IV Error-Correction Coding 

Part V Baseband Modulation and Demodulation 

Part VI Equalization and Channel Estimation 

Part VII Speech and Character Recognition Algorithms 

Part VIII System Design Considerations 

Part IX Bibliography 

Part I introduces the TMS320 family and the TMS320C5x generation; it also summarizes various 
telecommunications applications that use TMS320C5x DSPs. Parts I1 - VIII discuss major application 
topics. 

Most of the papers presented here are application reports written either by the engineering staff of the TI 
digital signal processing department (including factory and field personnel and summer students) or by 
third parties. Some of the papers were contributed by other departments within TI. It is generally assumed 
that reader is DSP literate and has some exposure to the TMS320 DSP family. 

The application reports presented in this book represent practical implementations of DSP algorithms. 
Source code associated with these reports is not listed in this book because of space constraints. However, 
most of the papers have associated source code that is publicly available from the TMS320 DSP Bulletin 
Board System (BBS) at 713-274-2323. The contents of this BBS are also mirrored at an Internet 
anonymous FTP site ticom. Some technical papers included here present commercial implementations that 
are licensable from respective organizations. The technical data sheets of these implementations will also 
be included in a future update of the TMS320 Software Cooperative Library. 

The editor would like to thank all the contributors and reviewers of this book. In particular, a special note 
of appreciation goes to Gene Frantz, Jay Reimer, Raj Chirayil, and Paul Buenaflor for their encouragement 
and helpful suggestions in improving the overall structure of this book. It is our hope that this book will 
help you in making the transition to DSP-based telecommunication applications. Lastly, the editor would 
like to acknowledge the untiring efforts of Ms. Katie Delbridge in planning and coordinating this project. 

Mansoor A. Chishtie 
Telecom Applications 

Digital Signal Processing 
Semiconductor Group 

Texas Instruments Incorporated 
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Overview 

The use of programmable digital signal processors (DSPs) is growing rapidly in telecommunication 
applications. Conventional wire-line telephony applications were among the earliest adopters of digital 
signal processing technologies. High-speed telephone-line modem products use more general-purpose 
DSPs than most other industries, and recent growth of personal and mobile communication services has 
spurred new interest in high-performance DSPs. With the ongoing integration of mobile communication 
services and portable computer applications, the role of programmable DSPs in emerging products is 
expanding. Today, digital signal processors are moving from high-end, low-volume applications to 
mainstream consumer applications. 

Telecommunication applications can be broadly categorized into two classes: 

1. Core Applications. These applications are the essence of any telecommunication product and 
include baseband signal processing algorithms, voice and data compression, error correction 
techniques, and equalization and channel estimation. 

2.  Enabler Applications. These applications provide necessary human interface, improve overall 
quality of an end-product, and include speech and character recognition, echo cancellation, and 
noise cancellation. 

Programmable Versus Hard-Wired Solutions 

DSPs are following the path of microprocessors in terms of performance and on-chip integration. At the 
same time, users of DSPs are concerned about power consumption. As the communications industry 
improves portable applications, low power and high integration become key design care-abouts. Generally 
speaking, a product design is constrained by one or more of the following key design goals, not necessarily 
with equal importance: 

Power consumption 
Product form factor 
Upgradability 
Cost of product 
Cost of design 
System integration 

These design goals play key roles in selecting a programmable versus function-specific or hard-wired DSP 
solution. 

Newer generation DSPs are addressing these concerns. They support various low-power and power-down 
modes along with clock control options to help meet power goals. System integration and form-factor goals 
are often interrelated. With high on-chip integration of peripherals and memory, modem DSPs are 
well-suited for portable applications in which product form factor is extremely important. In Part VIII, 
"The PCMCIA DSP Card: An All-in-One Communications System", page 237, describes a DSP system 
based on Personal Computer Memory Card Interface Association (PCMCIA) type I1 card specifications. 
Many DSPs are now available in thin low-profile plastic packages, which are ideal for surface-mount 
applications. 



In today's evolving communications world, flexibility and upgradability of design are key factors in longer 
product cycles. Many personal communication standards are in the early stages of development. Some of 
these standards must maintain compatibility with older standards. Programmable DSPs are especially 
suitable for designs that require multiple modes of operation and future upgradability. In a U.S. digital 
cellular subscriber unit, a programmable DSP engine can easily handle the two-mode operation. 

Finally, the traditional distinction between programmable and function-specific DSP designs is fading 
because of customizable DSP (cDSP) solutions. Now, designers can decide which section of a design is 
best suited for a hard-wired approach. Code that must maintain upgradability can be downloaded into 
on-chip RAM. The rest of the program can be masked on on-chip ROM. Algorithm accelerators or custom 
peripherals can be designed and placed on the same die. These techniques can be implemented through the 
TI standard cDSP cell design methodology or through the standard gate-array design flow of the TEC320 
product line. 

Fixed-Point Versus Floating-Point Solutions 

Typically, floating-point DSPs are used in high-end, high-performance telecom applications such as video 
conferencing, network packet switching, cellular base stations, etc. Floating-point DSPs offer large 
dynamic range, a fast floating-point computation engine, and large-memory addressability. Due to wider 
instruction word size, they support more addressing modes and higher execution unit parallelism as well. 
Floating-point support and large operand dynamic range result in an ease of transition from simulation 
environment to real-time implementation. A more orthogonal instruction set helps in providing efficient 
high-level language code generation tools. 

On the other hand, fixed-point 16-bit DSPs are very popular in high-volume, low-power applications. 
Generally, they consume less power and cost less because of a smaller die size. They can be operated at 
faster speeds because of their relatively simple architecture and fewer speed paths. Newer fixed-point DSPs 
provide application-specific instructions and on-chip power management for portable and mobile 
communication applications. Due to their prevalence in the mobile communications market, many 
upcoming industry standards are fine-tuned for 16-bit fixed-point implementations. One such example is 
the voice compression specification of U.S. Digital Cellular Standard, the IS-54. This algorithm is 
optimized for 16-bit fixed-point DSP engines. With improved compiler support and a more orthogonal 
instruction set, the end-product development cycle has also become shorter. 



TMS320 Digital Signal Processors 

The TMS320 family consists of five generations of fixed-point and floating-point devices (see Figure 1). 
Members of each generation are object-code and, in some cases, pin compatible. Each generation offers 
unique features and capabilities, which are optimized for certain types of applications. 

Figure 1. TMS320 Family of Devices 
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TMS320 Fixed-Point DSPs 

The three generations of TMS320 fixed-point DSPs - TMS320Clx, TMS320C2x, and TMS320C5x - 
have a 16-bit architecture with a 32-bit ALU and accumulator. They are based on Harvard architecture with 
separate buses for program and data, allowing instructions and operands to be fetched in parallel. They also 
feature a 16 x 16-bit hardware multiplier for single-cycle multiply operations, and a hardware stack for 
fast interrupt response time. An overflow saturation mode prevents wraparound. Most of the instructions 
are executed in a single cycle. Performance currently ranges from 3.5 to 40 MIPS (million instructions per 
second). Even higher performance DSPs will become available in the near future. 

The TMS320C lx  generation is based on the first DSP, the TMS32010, which was introduced in 1982. 'Clx 
devices include 1441256 words of on-chip RAM and 4K to 8K words of on-chip ROM. Instruction cycle 
time is 114 to 280 ns. Members of this generation include the TMS320C10, TMS320C14, TMS320E14 
(the EPROM version of the TMS320C14), TMS320C15/E15, TMS320C16, and TMS320C17E17. The 
TMS320C14E14 has been optimized for control applications. The TMS320C16 has an expanded memory 
address space of 64K words. Low-power versions are also available for 3-volt designs. 

The TMS320C2x generation is based on the TMS320C25, featuring 544 words of on-chip RAM and 4K 
words of on-chip ROM. Total address space is expanded to 64K words for both data and program. The 
instruction set has been considerably enhanced over the TMS320Clx instruction set, reducing the 
instruction cycle time to 120180 ns. Other members of the 'C2x generation include the TMS320E25 (an 
EPROM version of TMS320C25), the TMS320C26, and the TMS320C28, which expands the on-chip 
RAM and ROM. 

The TMS320C5x generation includes the TMS320C50 (10K words of on-chip RAM, 2K words of on-chip 
ROM), TMS320C51 (2K words of on-chip RAM, 8K words of on-chip ROM), TMS320C52 (1K words 
of on-chip RAM, 4K words of on-chip ROM), TMS320C53 (4K words of on-chip RAM, 16K words of 
on-chip ROM), and TMS320C53SX (4K words of on-chip RAM, 16K words of on-chip ROM). All the 
devices except the 'C52 have two serial ports; the 'C52 has one. Most of the devices in this generation are 
available in thin plastic (132- and 100-pin) quad flatpack packages. With an enhanced instruction set, 
TMS320C5x devices can execute code at the rate of 25 ns per instruction. New architecture features include 
a bit-manipulation unit, called PLU (parallel logic unit), shadow registers for fast context switch, JTAG 
serial scan emulation, and zero-overhead loops. Low-power versions are also available. 

TMS320 Floating-Point DSPs 

The two generations of TMS320 floating-point DSPs - TMS320C3x and TMS320C4x (the first DSP 
designed for parallel processing) - have a 32-bit architecture with 40-bit extended-precision registers. 
They are based on Von Neuman architecture. Multiple buses have been added for faster throughput. 
Features include a hardware floating-point multiplier and a floating-point ALU. 

The TMS320C3x generation is based on the TMS320C30 and features 2K X 32 words of on-chip RAM, 
4K x 32 words of on-chip ROM, and a 64-word on-chip instruction cache. 'C3x devices include an on-chip 
DMA controller, two serial ports, two timers, two external 32-bit data buses, and a 16M-word linear address 
space. Instruction cycle rates are 60 and 50 ns, with peak performance of 40 MFLOPS (million 
floating-point operations per second). A low-power version of TMS320C31 features special instructions 
for power management. 

The TMS320C4x generation includes the TMS320C40, a parallel digital signal processor. It includes six 
communications ports, a self-programmable six-channel DMA coprocessor, a developingldebugging 
analysis module, two independent 32-bit memory interfaces, a 16G-byte address space, and two timers. 
Other features includes two 4K-byte RAM blocks, one 16K-byte ROM block, and a 512-byte instruction 



cache. This generation is designed to execute each instruction in 40 ns, perform up to 275 MOPS (million 
operations per second), and provide 320M-bytelsecond throughput. 

TMS320C5x Architecture 

The TMS320C5x generation is designed to perform complex computation-intensive signal processing in 
real time. It has a high-performance pipelined architecture that enables it to execute each instruction at the 
maximum rate of 25 ns per instruction. It has a familiar 16132-bit accumulator-based architecture with a 
16-bit wide external address bus and a hardware multiplier similar to traditional DSP architectures. It 
includes a bit-manipulation or parallel logic unit, (PLU), which allows it to efficiently implement 
traditional microcontroller-type operations. Automatic interrupt context switch and reduced interrupt 
latency are made possible by on-chip shadow registers and an 8-word deep hardware stack. On-chip 
peripherals include two serial ports (one of which can be used in the time division multiplex mode), one 
timer, a wait-state generator, and a phase-locked loop for clock frequency multiplication. Figure 2 on page 
8 shows the key features of the TMS320C5x architecture. 

The TMS320C5x architecture introduces several new features to make it suitable for telecommunication 
and related applications. Traditional communication designs (such as modems and cellular radios) use a 
microcontroller and one or more digital signal processors. Typical microcontroller tasks are system control, 
general housekeeping, and user interface. These tasks are generally run on a microcontroller because they 
do not require a high-performance processor. Additionally, these functions are often written in C and 
involve bit manipulation. The 'C5x bit manipulation unit (PLU), memory-mapped input-output ports, 
dynamic postscalers and prescalers, and C language support enable these traditional microcontroller tasks 
to be efficiently implemented. Salient features and benefits of TMS320C5x architecture are shown in Table 
1. 

Table 1. Benefits of TMS320CSx Features 

-- 

Harvard architecture /multane~sly accesses instictions and data operands 

Feature 

Parallel logic unit I Allows direct bit manipulation on memory operands 

Benefit 

Shadow registers I Allow zero-overhead context switch for interrupts 

Hardware stack I Supports fast interrupt processing 

Repeat-block loops / Reduce overhead of looped code 

Memory-mapped 110 ports / Efficiently handle peripheral data transfer 

Circular buffers I Implement queues. delay lines, circular convolution, etc. 

Hardware multiplier ( Supports single-cycle signed and unsigned integer multiplication 

Power-down modes I Reduce active and idle power consumption 

High-speed, single-cycle 
instruction execution unit 

Helps implement advanced signal-processing algorithms in real time 



Figure 2. Key Features of the TMS320C5x Architecture 
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Speech and Character Recognition Algorithms 

DSPs are often called upon to perform user-interface tasks in addition to core applications. This is a direct 
consequence of one very important feature of a DSP-based product: flexibility of design. This flexibility 
allows system designers to load additional tasks on their DSPs to better utilize spare MIPS. A pertinent 
example is that of a mobile phone; the voice dialing feature can be easily implemented on a DSP without 
additional DSP horsepower. This is because the phone will be on-hook (or off-air), and the DSP will have 
many spare MIPS available when the voice dialing feature is enabled. With the onset of personal digital 
assistant (PDA) technology in which computers and communication applications merge, human interface 
designs are gaining more importance. Three application papers are presented in this section. 

System Design Considerations 

Every DSP system engineer deals with several design care-abouts. This part highlights some of these 
general hardware and software design considerations. The paper "The PCMCIA DSP Card: An All-in-One 
Communications System" presents an embedded DSP hardware design example. The second paper, 
"Software Coding Guidelines for 'C5x Developers" outlines general programming guidelines for 
TMS320C5x assembly language programmers. Finally, the paper "TCM320AC3x/4x Voice-Band Audio 
Processors" describes DSP applications with voice-band audio processors. 

Bibliographies and Other References 

To keep TMS320 designers aware of new applications and developments related to the TMS320 DSPs, 
Texas Instruments has published extensive bibliographies of TMS320-related conference papers and 
technical articles. Part IX of this book serves as an extension to the previously published bibliographies. 
It lists only those papers and articles that are generally related to telecommunication applications. 

In addition to this collection of telecommunications-related papers on TMS320C5x digital signal 
processors, Texas Instruments has published related application papers on other TI digital signal 
processors. For more information, refer to Volumes 1,2, and 3 of Digital Signal Processing Applications 
with the TMS320 Family: Theory, Algorithms, and Implementations. 
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Introduction 

This document presents the functional components of a dual-mode cellularphone as specified by the CTIA 
IS-54 standard. For each functional component, the relevant algorithm, its data structures, if any, and 
implementation details are given. 

A Functional View of a Dual-Mode Cellular Phone 
As shown in Figure 1, a dual-mode cellular phone consists of the following: 

Transmitter Antenna assembly 

Receiver 

Coordinator 

Control panel 

A dual-mode phone is capable of operating in an analog-only cell or a dual-mode cell. Both the transmitter and 
the receiver support both analog FM and digital time division multiple access (TDMA) schemes. Digital 
transmission is preferred, so when a cellular system has digital capability, the mobile unit is assigned a digital 
channel first. If no digital channels are available, the cellular system will assign an analog channel. 

The transmitter converts the audio signal to a radio frequency (RF), and the receiver converts an RF signal 
to an audio signal. The antenna focuses and converts RF energy for reception and transmission into free 
space. The control panel serves as an inputJoutput mechanism for the end user; it supports a keypad, a 
display, a microphone, and a speaker. The coordinator synchronizes the transmission and receive functions 
of the mobile unit. 

Figure 1. Functional Components of a Dual-Mode (IS-54) Cellular Phone 
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Figure 2 shows the functional components of the digital portion of a dual-mode cellular phone. 

Figure 2. Functional Blocks of the Digital Portion of a Dual-Mode Phone 
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Transmitter 

The transmitter converts low-level audio signals from the microphone to digitally coded RF signals by 
audio processing, digital signal processing, modulation, and RF amplification. The transmitter converts 
64-kbps pulse code modulation (PCM) data to a lower data rate, multiplexes control information, 
error-protects the data, and then passes the data stream to the RF section for modulation, amplification, and 
transmission. The coordinator inserts system control messages. 

Transmit Front-End Processing 

Speech signals from the microphone are first amplified, passed through an antiliasing filter, and sampled 
at a rate of 8 kHz to create a digitized p-law 64-kbps bit stream. Typically, no pre-emphasis is applied. 
Figure 3 shows the functional blocks of the front-end analog section. The standard does not propose any 
specific echo canceler; however, it recommends implementing one. The front-end processing includes the 
following: 

An amplifier. The gain is specified to produce an average signal energy, during a frame, which 
is 18 dB down from full scale. 
A bandpass filter to avoid antialiasing. 
An analog-to-digital converter. The standard recommends that you either directly convert the 
analog signal to a uniform PCM format with a minimum resolution of 13 bits or convert the 
analog signal to an 8-bit p-law codec sample. 



Figure 3. Front-End Analog Section Converts Audio to a 64-kbps Data Stream 
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The speech coder further reduces the data rate by compressing the 64-kbps data stream input to create a 
7.950-kbps data stream. The IS-54 standard accepts a full-rate speech coder called vector sum excited 
linear prediction (VSELP). This algorithm belongs to a class of speech coders known as code excited 
linear predictive coders (CELP). This class uses code books to vector quantize the excitation (residual) 
signal. VSELP is a variation on CELP. 

The incoming 64 kbps of data are grouped into frames at a frame rate of 50 frames per second. Hence, each 
frame contains 160 samples and represents a duration of 20 ms. Each frame is coded into 159 bits. Hence, 
the rate of the conversions is 50 x 159 = 7950 bps, as shown in Figure 4. 
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Figure 4. Full-Rate Speech Coder (VSELP) Reduces a 64-kbps Data Stream to an 
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The speech decoder utilizes two separate code books. Each code book has an independent gain. The two 
code-book excitations are each multiplied by their corresponding gains and summed to create a combined 
code-book excitation. The basic parameters are shown in Table 1. 

+ 64 kbps 

Table 1. Basic Parameters of a VSELP Speech Coder 

Parameter Notation Specification 

Sampling rate s 8 kHz 

A_ r 

Frame length N f 160 samples (20 ms) 

ADC 

Subframe length N 40 samples (5 ms) 

Short-term predictor order NP 10 

Number of taps for long-term predictor NL 1 

Number of bits in code word 1 (number of basis MI 
vectors) 

7 bits 

Number of bits in code word 2 (number of basis M2 7 bits 
vectors) 
NOTE: Within a frame, the 159 bits are allocated as shown in Table 2 ;  detailed bit allocations are shown in Table 3. 



Table 2. Bit Allocations Within a Frame of Speech 

Parameter Bits Allocated 
- 

Short-term filter coefficients 38 

Frame energy, RO 

Lag, L 

Code words, I, H 

Gains beta, gamma1 , gamma2 32 

Table 3. Detailed Bit Allocations of Parameters Within a Frame 

Parameter Parameter Name Bits Allocated 

Frame energy RO 5 

1 st reflection coefficient 

2nd reflection coefficient 

3rd reflection coefficient LPC3 5 

4th reflection coefficient 

5th reflection coefficient 

6th reflection coefficient 

7th reflection coefficient 

8th reflection coefficient 

9th reflection coefficient 

10th reflection coefficient 

Lag for first subframe LAG-1 7 

Lag for second subframe 

Lag for third subframe 

Lag for fourth subframe 

1st code book, I, for first subframe 

1st code book, I, for second subframe 

1 st code book, I, for third subframe 

2nd code book, H, for first subframe CODE2-1 7 

2nd code book, H, for second subframe 

2nd code book, H, for third subframe 

2nd code book, H, for fourth subframe 

{GS, PO, P I }  code for first subframe 

{GS, PO, P I }  code for second subframe GSPO-2 8 

{GS, PO, P I }  code for third subframe GSPO-3 8 

{GS, PO, P l }  code for fourth subframe GSPO-4 8 



Channel Coder 

The main function of the channel coder is to protect the data stream against the noise and fading that are 
inherent to a radio channel. The coder accomplishes this by adding extra or redundant bits. The greater 
the number of redundant bits, the higher the immunity to interference and the lower the bit-error rate. The 
tradeoff is an increased data rate. 

The channel coder protects the data stream in four stages: 
1 .  Convolutional coding 
2. Cyclic redundancy check (CRC) generation 
3. Interleaving 
4. Burst generation 

The first two are mathematical operations, whereas the last two are heuristic approaches. The receiver 
performs an inverse operation to determine whether errors have occurred during propagation. In radio 
propagation, it has been found that the fading occurs at localized instances of time and space. As a result, 
interleaving spreads the information of the data stream across two frames, because it is unlikely that a 
clustered bit error would occur in successive frames. Finally, data is propagated in bursts. 

Between interleaving and burst generation, the channel coder multiplexes control information. Figure 5 
shows the functional components of a channel coder. 

Figure 5. A Channel Coder and Its Functional Components With Associated 
Data Rates 
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Convolutional Coding 

Convolutional coding provides error-correction capability by adding redundancy to the transmitted 
sequence. Convolutional encoding is implemented by linear feed-forward shift registers. 
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A convolutional coder is described by the rate at which data enters the coder and the rate at which data 
leaves the coder. For example, a rate- 112 convolutional coder implies that for every 1 bit of data entering 
the coder, 2 bits leave the coder. The smaller the ratio, the greater the redundancy. This improves the 
error-protection capability. 
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To reduce the bit rate, not all of the 159 bits in a frame are error-protected. Only 77 of these bits, called 
class 1 bits, are error-protected. The remaining 82 bits, called class 2 bits, are not error-protected. This 
is shown in Figure 6. 
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Figure 6. Error Protection via Convolutional Coding and CRC Computation 
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Cyclic Redundancy Check 
Of the 77 bits that are error-protected, it has been found that only 12 are perceptually significant. Hence 
these are protected by using a 7-bit cyclic redundancy computation before they are input to the 
convolutional coder. A 7-bit CRC is computed by dividing the data by a specified constant and transmitting 
the remainder with the data. The receiver detects errors by comparing the received remainder with what 
it has calculated. 

The following generator polynomial is used for the CRC: 

gCRC(X) = 1 + X + ~2 + x 4 +  ~5 + x7 
(1) 

The parity polynomial, b(X), is the remainder of the division of the input polynomial by the generator 
polynomial as shown below: 

a(x)*x7 / gCRC(X) = q(X) + b(X)/gCRC(X) (2) 
where q(X) is the quotient of the division and b(x) is the remainder. The quotient is discarded, and only 
the parity bits identified in b(X) are encoded for transmission. To facilitate the convolutional coder, these 
parity bits are placed into the array of class 1 bits. 

Figure 7. Error Protection Adds 101 Extra Bits per Speech Frame 
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In short, as shown in Figure 7, error protection adds 101 bits every 20 ms, or an additional 5050 bps. 
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lnterleaving 

As explained earlier, data from each frame is now divided and spread across two transmit slots. This is done 
because fading might destroy a frame, but it is unlikely that it will destroy two frames in succession. As 
a result, not all bits from a speech frame are lost by one bad slot. Figure 8 shows how the data is interleaved 
when x, y, and z are three speech frames in succession. 

Figure 8. lnterleaving Adjacent Frames for Error Protection 

Speech 
Frames 
x and y 

Speech 
Frames 
y and z 

Table 4 shows how the data is interleaved when y is the current frame and x is the previous frame. Note 
that the speech data is entered into the interleaving array by columns. 

Table 4. lnterleaving of Two Adjacent Speech Frames, x and y 



The 159 bits from a speech frame are classified as class 1 and class 2 bits; data is placed into the interleaving 
array in such a way that class 2 bits are intermixed with class 1 bits. Class 2 bits are sequentially placed 
into the array and occupy the following numbered locations: 

0, 26, 52, 78 

93 through 129 

130, 156, 182, 208 

223 through 259 

Control Signal Multiplexing 

Control signal information is added to the interleaved data. Control information includes 

Slow associated control channel (SACCH) 
Fast associated control channel (FACCH) 
Digital verification color code (DVCC) 
Synchronization word (SYNC) 

Figure 9 shows how all this control information is multiplexed. 

Figure 9. Control-Signal Multiplexing 
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Slow associated control channel (SACCH) is a signaling channel in parallel with the speech path used for 
the transmission of control and supervisory messages between the base station and the mobile unit. 
SACCH messages are continuously mixed with the channel data; 12 bits are allocated for SACCH. 

Fast associated control channel (FACCH) is a signaling channel for the transmission of control and 
supervisory messages between the base station and the mobile unit. FACCH messages are not mixed with 
the user information bits; they replace the user information block whenever necessary. 



Digital verification color code (DVCC) is an 8-bit code that is sent by the base station to the mobile unit 
and is used to generate coded digital verification color code (CDVCC). CDVCC is a 12-bit field that 
includes the 8-bit DVCC; CDVCC is sent in each slot from the base station to the mobile unit and vice versa. 
The CDVCC is used by the receiver to distinguish the current traffic channel from traffic cochannels. 

Synchronization word (SYNC) is a 14-symbol field that is used for slot synchronization, equalizer training, 
and time slot identification. 

Mobile Assisted Handoff 

Mobile Assisted Handoff (MAHO) is a new feature of IS-54. The base station can command the mobile 
unit to perform signal quality measurements on the current forward channel and any other 12 forward 
channels. The mobile unit can measure two quantities: 

1. Received signal strength indicator (RSSI), which is a measure of the signal strength expressed 
in dB. 

2.  Bit error rate (BER), which is an estimate of the bit error information obtained by measuring the 
correctness of the data stream at the input to the mobile unit's channel decoder. 

These channel quality measurements (RSSI and BER) are sent to the base station to assist it in handoff. 
This reduces the overhead on the base station. RSSI and BER are usually sent via SACCH, although they 
could be sent via FACCH during discontinuous transmission (DTX). DTX is a mode of operation in which 
a mobile unit transmitter autonomously switches between two transmitter power levels while the mobile 
unit is in the conversation state on an analog voice channel or a digital traffic channel. 

Burst Generator 

After the data has been compressed and error-protected, the bit stream is compressed (in time only) into 
a burst format. Burst timing offsets may be applied to facilitate dynamic time alignment. Figure 10 shows 
how the data is compressed and time-aligned to allow the data to be sent using one-third of the 48.6-kbps 
channel. 

Figure 10. Burst Generator 
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The 48.6-kbps data is now input to a differential quaternary phase-shift keying (DQPSK) modulator. This 
phase modulator groups two bits at a time to create a symbol. This results in four levels of modulation, 
as shown in Figure 11. Hence, the name quaternary. The term diferential is used because symbols are 
transmitted as relative phase changes, rather than absolute phase values. 
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Figure 11. A 4-Level Modulator Groups Two Bits to Form a Symbol 

Figure 11 shows that for certain transitions, the origin will have to be crossed. This implies that the power 
envelope at the decoder will be 0 when the origin is crossed; this can have an undesired impact on the filters. 
To alleviate this, a n/4 scheme is used. This is shown in Figure 12. The transitions in this scheme are either 
+/-45 degrees or +/-I35 degrees, and the origin is never traversed in transition from one state to another. 
This results in eight points on the circle, as shown in Figure 12. 

Figure 12. 7d4 Differential Quaternary PSK Modulator States 

Figure 13 shows how the input serial data is now presented as 2-bit parallel data and is supplied to the 
multipliers after digital-to-analog conversion. Since two digital-to-analog converters (DACs) are needed, 
they are sometimes referred to as dual DACs. Binary signals vary the phase-shifted signals via the 
multipliers. Filters limit the impulse response of the binary signals to ensure that the RF carrier occupies 
the allocated bandwidth. The two signals are then summed together to form the final phase-shifted carrier. 
The conversion from baseband to RF (that is, frequency translation of the modulated carrier) is typically 
carried in several stages in order to reach the 800-MHz range. 



Figure 13. d 4  DQPSK Modulator 
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The RF amplifier boosts the RF-modulated signal to output levels, as specified by the base station. Unlike 
analog transmission, which uses FM, the R F  arnplifier for DQPSK carrier must be linear. In FM, class C 
push-pull nonlinear amplifiers are used for amplification purposes. These nonlinear amplifiers are efficient 
(about 50%) in order to conserve power, However, nonlinear amplifiers cannot be used in DQPSK, because 
they would cause phase distortion. Linear amplifiers used for DQPSK are less efficient (30%). Figure 
14 shows an RF amplifier. 
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Figure 14. Linear RF Amplifiers Are Needed for IS-54 Cellular Phone 
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While a duplexer is required for the analog section of the dual-mode phone, it is not required for the digital 
portion, because in this case the transmitter and the receiver do not operate simultaneously. A simple PN 
switch is enough to isolate the receiver from the transmitter, allowing the duplexer to be removed from the 
digital portion. Removing the duplexer has added benefits: when DQPSK signals are passed through a 
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duplexer, a phase distortion occurs because of group delay; in addition, there is some power loss, which, 
in turn, requires a higher-rated power amplifier. Hence, removing the duplexer reduces the rating on the 
power amplifier, which extends the battery life of the mobile unit. 

Receiver 

The receiver functions in the following order: 
1. Amplifies the received radio signal 
2 .  Superheterodynes the RF signal to a lower workable frequency range 
3. Demodulates the signal 
4. Equalizes or compensates to mitigate the effects of distortions introduced by the radio channel 
5. Detects errors 
6. Decodes the speech signal 
7. Converts it back into analog form and eventually feeds it to a speaker 

The receiver consists of several functional components: 
Receiver RF amplifier 
Mixer section 
Demodulator 
Channel decoder 
Speech decoder 

Receiver RF Amplifier 
This section of the receiver amplifies the low-level DQPSK RF carrier, which could be as weak as a few 
picowatts (- 11 6 dBm). The RF amplifier increases this weak RF signal to a workable range before feeding 
it to the mixer section. The receiver RF amplifier is a broadband RF amplifier, which has a variable gain 
controlled by an automatic gain controller (AGC). The AGC compensates for the large dynamic range of 
the received signal, which is approximately 70 dB. The AGC also reduces the gain of the sensitive RF 
amplifier so that as the input signal increases, no distortions due to overdriving the receiver occur. Figure 
15 shows the RF portion of the receiver. 

Figure 15. RF Portion of Receiver Section of Dual-Mode Cellular Phone 
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frequency, called the intermediate frequency (IF), by mixing it with a local oscillator (refer to Figure 2). 
The oscillator source may be varied so that the IF is a constant frequency, which simplifies the IF amplifier 
design. Typically, a second mixer superheterodynes the first IF with another oscillator source to produce 
a much lower frequency than the first IF. A lower frequency enables the design and use of narrow-band 
filters. 

Demodulator 

A DQPSK demodulator extracts data from the IF signal. Typically, a local oscillator with a 90-degree 
phase-shifted signal is used. The demodulator determines which decision point the phase has moved to; 
it then determines which symbol is transmitted by calculating the difference between the current phase and 
the last phase (note that the transmitter is a differential modulator). 

Once the symbol has been identified, the next step is to decode the two bits. However, due to noise, Doppler 
effects, and Rayleigh fading, the signal must be compensated or equalized. Fading occurs when the same 
RF signal arrives at the receiver at different times because of multiple paths caused by reflections. The 
Doppler effect is caused by the motion of the transmitter relative to the received signal. The Doppler effect 
causes the received frequency to vary in proportion to the speed at which the mobile unit is moving; this 
implies that the equalizer section of a personal communication systems (PCS) unit need not be as complex 
when it is traveling at pedestrian speeds as when it travels at higher vehicular speeds. 

Equalizer 

The equalizer is effectively an inverse filter of the channel distortion. Since the RF channel is not constant 
(as a wireline channel is assumed to be), it is necessary to track or adapt to the changing RF channel. Hence 
the name adaptive equalizer. 

The IS-54 specification does not recommend a specific equalizer algorithm. At present, two classes of 
equalizers are popular: 

The decision feedback equalizer (DFE) 

The maximum likelihood sequence estimator (MLSE) 

Figure 16 shows an example MLSE adaptive equalizer [4]. It operates adaptively in a training mode at the 
beginning of each burst, as well as in a tracking mode during message detection. It includes a matched filter 
and a modified Viterbi processor. The equalizer in Figure 16 is used by the European GSM system but is 
similar to the ones used in North America. 



Figure 16. An MLSE Adaptive Equalizer 
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After demodulation and low-pass filtering of the received signal, the components x(t) and y(t) are sampled 
and AD is converted, with a sampling frequency equal to the bit rate. Then the signal samples are filtered 
through a digital N-tap transversal filter, which approximates the matched filter (MF) shown. 
Theoretically, an MF makes the receiver insensitive to the carrier and clock phases used to demodulate and 
sample the received signal, provided that the MF coefficients are properly adjusted and the time span of 
the MF is long enough to include all the channel impulse responses. To this end, you must choose the 
number of taps, N, in the MF to comply with the maximum number of echo delays that you expect to 
observe in the operational environment. Note that the modulator output pulses are spread over three bit 
periods. Typically, N = 6 seems to suffice. The MF output samples are finally processed according to the 
modified Viterbi processor, which operates on a number of states S = 2N - 1. The complexity of the Viterbi 
processor varies exponentially with respect to N. 
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Channel Decoder 

The channel decoder detects errors in the bit stream, demultiplexes the control data, and feeds the data to 
the speech decoder. This is shown in Figure 17. If errors are detected, a masking strategy, explained in 
Bad Frame-Masking Strategy on page 28, is applied. 
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Figure 17. Channel Decoding and Speech Decoding 
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The channel decoder works in the following stages: 
1. Control signal demultiplexer 
2. Error detector 

Control Signal Demultiplexer 

VSELP I I 
b 

I 

Speech, SACCH, FACCH, and DVCC data signals from the demodulator are demultiplexed to separate 
the various signaling information. SACCH and DVCC data are simply demultiplexed by directing the 
dedicated bits from each burst to their control-processing locations. Speech and FACCH demultiplexing 
is, however, more challenging. Since FACCH data may replace speech data at any time, FACCH data is 
extracted by first attempting to detect errors in speech data. If the CRC appears to be correct as decoded 
for a speech slot, the data is routed to the speech codec section. When the CRC is in error, the data is then 
decoded as a FACCH message. If the CRC appears to be correct, this FACCH message is routed to its 
call-processing location. 
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Error Detector 

DVCC words are error-detected, compared to the assigned DVCC to determine cochannel interference, and 
sent to the transmit section to be echoed back to the base station. 

The channel decoder provides BER information and RSSI when commanded by the base station. This 
feature is called MAHO, which is discussed in the Mobile Assisted Handoff section on page 21. 

Bad Frame-Masking Strategy 

The bad frame-masking strategy is based on a 6-state machine. On every decode of a speech frame, the 
state machine can change states. State 0 occurs most often and implies that the CRC comparison was 
successful. State 6 implies that there were at least six consecutive frames that failed the CRC check. The 
action taken at each of these states varies as well. At state 0, no action is taken. States 1 and 2 are simple 
frame repeats. States 3, 4, and 5 repeat and attenuate the speech. State 6 completely mutes the speech. 
A detailed description of the action corresponding to each state follows: 

State 0: No CRC error is detected. The received decoded speech data is used. 
State 1: A CRC error detected. Parameter values R(0) and the LPC bits from the last frame that 
was in state 0 are repeated. The remaining decoded bits for the frame are passed to the speech 
decoder without modification. 
State 2: Identical to the action for state 1. 
State 3: Similar to the action for state 1, except that the value for R(0) is modified. A 4-dB 
attenuation is applied to the R(0) parameter: that is, if R(0) of the last state 0 frame is greater than 
2, then R(0) is decremented by 2 and repeated at this lower level. 
State 4: Similar to state 3. A further attenuation by 4 dB is applied to R(0) so that the level is 
as much as 8 dB from the original value of R(0). 
State 5: Similar to 4. R(0) is further attenuated by 4 dB. 
State 6: The frame is repeated; but this time R(0) is cleared to 0, totally muting the output speech. 
Alternatively, comfort noise could be inserted in place of the speech signal. 

Speech Decoder 

The speech decoder, VSELP, converts the 7950-bps input data stream into 64-kbps PCM data. In poor radio 
conditions, the performance of VSELP has been shown to be superior to analog cellular. This is primarily 
due to the error-protection and error-detection capabilities that are made possible by digital techniques. 

When speech frames are lost because of errors and are not correctable, the speech coderrepeats the previous 
frame information. If the n ~ m b e r  of consecutive lost speech frames increases, a gradual muting is applied. 
Thus, gaps are filled by using the characteristics of the human ear. 

When the user data is not speech, but computer or facsimile data, then the speech decoder is bypassed. 

Adaptive Spectral Postfilter 

The perceptual quality of the synthetic speech can be enhanced by using an adaptive spectral postfilter as 
the final processing step. The form of the postfilter is 

. - 
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r = l  

ai = Coefficient of synthesis filter 



Audio Interface 

The output of the speech coder, a 64-kbps bit stream, is input to the audio interface, which consists of the 
following stages: 

1. Digital-to-analog conversion 
2. Reconstruction filter 
3. Receive-level adjustment 

The reconstruction filter minimizes the step transients caused by the D/A converter. The receive-level 
sensitivity is defined so that a value of 24 in the RO field, the frame energy, causes an acoustic level of at 
least 97 dB at the transducer when measured by an artificial ear. RO equal to 24 represents the average frame 
energy during a frame, which is 18 dB down from full scale. 

Summary 

This report presents a brief functional overview of a digital cellular mobile station. Emphasis is given to 
the algorithmic description and implementation aspects of each function. The main purpose of this paper 
is to provide a general introduction to various functional blocks. Refer to the other papers in this book for 
a detailed implementation description of the individual functions. 
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Introduction 

This paper describes a C language simulation of both the transmit and receive baseband processing for a 
digital cellular telephone that meets the U.S. digital cellular standard (IS-54B). This simulation is needed 
for two reasons: first, to gain greater understanding of the IS-54 digital cellular standard and the associated 
digital signal processing required in a terminal that meets this standard with a vision toward efficient 
implementation on the TMS320 DSPs; second, to gain the capability to evaluate the effect of bit errors on 
the speech coder (vector sum excited linear prediction, or VSELP) and IS-54 control functions. This 
necessitated development of a simulation of the IS-54 processing and RF channel. See Figure 1. 

The IS-54 standard separates the data bits into class 1 bits and class 2 bits. The class 2 bits are not protected 
and have less influence on the speech coder than class 1 bits. The class 1 bits are convolutionally encoded 
so that errors can be detected and corrected. In addition, a cyclic redundancy check (CRC) is calculated 
on the 12 class 1 bits designated as most perceptually significant. The CRC is also convolutionally encoded 
for error detection and correction and is used to signify noncorrectable errors in the most perceptually 
significant 12 bits for special error handling provisions. Consequently, the evaluation of the effect of bit 
errors on the voice coder must encompass all IS-54 transmit and receive processing functions. 



Figure 1. IS-54B Simulation Processing Block Diagram 
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Description 

The IS-54 simulation starts with input speech parameters that are organized into 20-millisecond frames. 
Each frame is processed through the transmit path, the channel simulation, and the receive path. 

Transmit Path 

A block diagram of the IS-54 simulation is shown in Figure 2. The speech data is read into the simulation 
from an input speech file. This file is binary pulse-code-modulated 16-bit data. The VSELP encoder is the 
Motorola standard, which is available from the TIA. The VSELP encoder and decoder are not incorporated 
into this simulation but are run as a separate program. The output from that program is fed to this simulation, 
whose output is then used to create final PCM speech data. From the output of the VSELP encoder, the 
most perceptually significant bits of the encoded speech frame are packed into a binary word for generation 
of the CRC. The CRC is calculated by first multiplying the input word by 27 and dividing by a polynomial 
given in IS-54 as: 

The quotient is discarded and the 7-bit remainder is kept. 

Figure 2. IS-54 Error Encoding and Interleaving 
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The CRC, along with the other class 1 bits (IS-54 Table 2.1.3.3.3.4-2) from the VSELP data, is packed into 
the cll array [I]  to be encoded for forward error correction. The forward error correction is a rate 1/2 
convolutional encoder with an initial state of 0x00. This encoder produces two output bits for each bit 
input. The last five bits fed into the convolutional encoder are tail bits of state 0 to force the encoder to also 
return to the zero state. A block diagram of the convolutional encoder is show in Figure 3. 
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Figure 3. IS-54 Convolutional Encoding Block Diagram 
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The output from the convolutional encoder, arrays ccO and ccl (IS-54 para. 2.1.3.3.3.4), are then packed 
into a 260-bit slot data array along with the class 2 bits (IS-54 Table 2.1.3.3.4-1). During this packing, the 
bits are shuffled around within the slot to minimize the probability that a burst error would affect more than 
one bit in the same vocoder parameter. This is shown in Figure 2 as voice cipher. The 260-bit slot data 
array is then interleaved with data from the previous frame so that the resultant transmitted burst consists 
of bits from both the current and previous frames. This interleaving of data across two transmit slots is 
designed to randomize the burst error across the data bits, thus increasing the probability that bit errors will 
be detectable and correctable. 

The data, which consists of speech and redundant error correction information from two frames, is then 
formatted to the IS-54 slot format. See Figure 4. This consists of inserting the sync word, the SACCH data, 
the CDVCC field, and the reserved bits (the CDVCC and the reserved bit fields are filled with 0s in this 
simulation). The base-to-mobile format is used in order to focus on the processing stream in the handheld 
terminal. 

The IS-54 standard specifies the modulation as n14 differential quadrature phase shift keying (DQPSK). 
The input data is paired into dibits, allowing for four symbols that specify a phase change from the previous 
point on the complex plane. Each dibit corresponds to an odd multiple of n14 phase change resulting in 
an 8-point modulation constellation. These eight points are also called maximum-effect points. 

The next function in the transmit path is the square-root-raised-cosine (SRC) filter. This filter is employed 
on both transmit and receive sections for the composite effect of araised-cosine filter transfer function. This 
results in a filter response with nulls at the adjacent symbols in order to minimize intersymbol interference. 
The transmit SRC filter also includes 4X interpolation. The overall filter response is split between the 
transmit and receive sections to allow more efficient use of bandwidth due to partial response signaling. 



Figure 4. IS-54 Slot Formats 
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Channel Model 
At this point in an actual IS-54 handset, the data would then be input to the RF stage for modulation of the 
carrier frequency. Because this is a simulation, we chose to substitute simulated fading and noise generation 
for the transmit and receive RF portions of the IS-54 processing chain. 

SACCH 

In a mobile radio environment, signals from many paths combine at the antenna. Depending on the 
relationship between the phase angles of the signals, the effect of the combination is interference that can 
be constructive or destructive. As the mobile radio moves, the relationship between the phase angles 
changes, causing the signals to be combined randomly and providing a challenge for receiver and system 
designers. The term for this effect is fading, and because the magnitude of the result occurs in a Rayleigh 
distribution about the mean value, it is called Rayleigh fading. 

Data 

A simulator for generating Rayleigh fading was proposed by W. C. Jakes [4]: 

SACCH 

Data 

N = 34; / *  number of simulated signals * /  
NO = 0.5 *(N/2 - 1); / *  number of oscillators * /  
alpha = PI / 4; 
V = 55; / *  vehicle speed in MPH * /  
Fc = 850.03+6; / *  carrier frequency * /  
lambda = 3.OE+8 / Fc; / *  carrier wavelength * /  
wm = 2 * PI * V / lambda; 

Sync 

xc(t) = sqrt(2)*cos(alpha)*cos(wm*t); 

xs(t) = sqrt(2)*sin(alpha)*cos(wm*t); 

for (n = 1 ; n c= NO ; n++) 

wn = wm * cos(2*P1*n/N); 

CDVCC Data 

CDVCC 

xs(t) += 2*sin(PI*n/NO)*cos(wn*t); 
1 

xc(t) is the in-phase (cosine) component, and xs(t) is the quadrature (sine) component. This model provides 
a very good approximation of theoretical behavior and is excellent for general use. 

Data 

Data RSVD 



Another major impairment to wireless communications is within the radio itself. As the received signal 
gets weaker, the signal-to-noise ratio decreases, and errors caused by thermal noise in the radio receiver 
can occur. This noise is characterized by a zero-mean, Gaussian probability density function in the time 
domain. In the frequency domain, the power spectral density of thermal noise is constant and is called white 
noise. In a real system, there are filters that limit the bandwidth of the noise, but the power spectral density 
of the noise is still constant in the filter passband, so it can still be called white. In the receiver, the noise 
is added to the received signal and is therefore termed additive white Gaussian noise (AWGN). 

In the simulation, a Gaussian noise generator is used that generates noise of unit variance and then is scaled 
to the variance required for the desired signal-to-noise ratio. 

Receive Path 
The receive path (receiver) is also shown in Figure 1. Raised-cosine-filtered samples are fed into the sync 
detector, which looks for the sync word that occurs at the beginning of the slot. The sync detector looks 
for this sync word over a 4-symbol window, starting two symbols prior to the expected sync point. When 
the data matches the proper slot sync word, the data is fed into the SRC filter. This filter is the same as the 
transmit chain SRC filter described on page 36, except that the receive filter performs 4X decimation. 

After it is fed through the SRC filter, the data is input to a channel equalizer. As shown in Figure 2, the 
channel equalizer can be turned either on or off under command of the cellular base station. The channel 
equalizer is not included in this simulation and is the subject of a separate paper [9]. 

The delay detection process, also called differential decoding, is the inverse of the differential encoding 
process in the transmitter. The delay detector computes the amount of phase change between two 
successive raised-cosine-filtered maximum-effect points. This can be shown easily with the exponential 
notation for complex numbers. Let A*exp(j*PIl2) be the current point and B*exp(j*PI/4) be the previous 
point. Now multiply the current point by the complex conjugate of the previous point: 

The result is an exponential whose angle is the phase change between the previous and the current points. 
Because it is the phase change that contains the information bits, the magnitude can be disregarded. 

The deinterleave function recombines a frame of speech data from data received from two consecutive 
receive slots. As discussed in the transmit chain description, the data is interleaved to minimize 
susceptibility to burst errors. At this time, the data is divided back into the encoded class 1 (ccO and ccl) 
bits and the unprotected class 2 bits. The class 1 bits are then fed into a convolutional decoder while the 
unprotected class 2 bits are held to recombine with the class 1 bits once decoded. 

The convolutional decode is performed via the Viterbi algorithm. A two-dimensional array is built that 
is 89 (the number of bits input to the encoder) columns wide and 32 (the possible number of states of the 
encoder) rows high. This algorithm calculates the probability of possible paths through the array (which 
represent the sequence of states through which the encoder would have passed). This probability is added 
to the cumulative probabilities for each of the possible preceding states to give a cumulative probability 
for a given trellis position. Then, given that the beginning and ending states of the convolutional encoder 
are 0 (0 is the initial state and five tail bits of 0 force it back to state O), the path of maximum probability 
is selected by tracing through the array from ending state to beginning state. With the path through the trellis 
known, the input bits are easily obtained. The path of maximum probability should produce the original 
encoded bit stream, even in the presence of low bit errors. 

The CRC value and the 12 most perceptually significant bits are extracted from the decoded class 1 bits. 
A CRC is recalculated on these 12 bits and compared against the received CRC. This is done to detect the 



presence of errors in these 12 bits. If the CRCs match, the received VSELP speech parameters are sent to 
the VSELP decoder. If they do not match, a state machine (IS-54 para. 2.2.2.2.3.2.) is employed for 
handling the errors. This state machine stores the last good set of speech parameters for use in cases of 
repeated CRC errors. The received speech parameters are then fed into the VSELP decoder for speech 
synthesis. 

Using the Simulation 

One of the goals in developing this simulation was to ensure that it is portable across different computing 
platforms. To this end, every attempt was made to use only ANSI-C compatible calls and syntax. The code 
was originally developed using Borland C++ 3.1 running on 486133 ISA PCs. It was tested and modified 
to make it compatible with the Microsoft Visual C++ 1.0 and Zortech C++ 3.0 compilers, which support 
ANSI-C compliance. 

To run the simulation, a command file, IS54SIM.PRh4, is utilized to pass all required information to the 
program. Additionally, another file, SRC-HLT.DAT, is required and contains the square-root cosine filter 
coefficients necessary for the simulation. These files and the simulation program must all reside in the same 
working directory. 

The format of the command file is simple. It is an ASCII file that contains four lines: 

1. The desired SNR 
2. The assumed vehicle speed 
3. The carrier frequency (used in Fading model) 
4. The filename for the input speech data that has already been VSELP processed (This file should 

also be in the working directory.) 

The SRC-FILT.DAT file is also an ASCII file, where each line is a coefficient used by the SRC filter. 

After running the simulation (by typing the program name on the system command line), there are seven 
output files produced, all of which reside in the current working directory. These files are summarized 
below. 

IS54SIM.OUT An ASCII-Hex version of the 193-bit VSELP data recovered for each frame 

RAWTXBIT.OUT An ASCII-Hex version of the 324-bit formatted TDMA slot prior to transmis- 
sion 

CLTXBIT.OUT An ASCII-Hex version of the 89 class 1 bits and 82 class 2 bits for the transmit 
slot 

CLRXBITS .OUT An ASCII-Hex version of the 89 class 1 bits and 82 class 2 bits recovered in the 
receive slot. Each line of receive data (one per slot) is appended with the current 
CRC error state (0-7). 

RAWRXBITS.OUT An ASCII-Hex version of the 324-bit formatted TDMA slot prior to decoding. 
Each line of receive data (one per slot) is appended with the current CRC error 
state (0-7). 

By examining these output files, a user can determine the performance of an IS-54 transmission under 
varying levels of SNR (degradation in the channel). This program also outputs the number of received 
frames with valid CRC, the number of frames with invalid CRC, and the bit error rates for each field for 
CRC-valid frames. 



The simulation was compiled and run on IBM-compatible PCs using several compilers. The simulation 
runs three to six slots per second on a 486DX-33MHz PC. 

Code Availability 

The associated program files are available from Texas Instruments TMS320 Bulletin Board System (BBS) 
at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com. 
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Introduction 

TIA subcommittee TR45.3 has adopted vector sum excited linear prediction (VSELP) as the voice coding 
standard for U.S. digital cellular communications. Motorola was responsible for the design and 
development of the VSELP algorithm. Additionally, Motorola has kept implementation details of the 
VSELP algorithm proprietary. This paper explains an interoperable VSELP alternative algorithm and the 
implementation of this algorithm on a TMS320C5x digital signal processor. The interoperable algorithm 
is developed using reference [ l ]  as a guideline. 

The VSELP algorithm is a type of code excited linear predictive coding (CELP) algorithm that has been 
adopted as the standard for digital cellular communications. The VSELP vocoder encodes speech at a bit 
rate of 7950 bitslsecond. An additional 5050 bitslsecond are utilized for error protection and 
synchronization, bringing the total bit rate to 13,000 bitslsecond. This paper describes only the voice coding 
portion of the vocoder. A brief overview of the VSELP algorithm is presented for background. 

Overview of VSELP 

Structurally, the VSELP algorithm closely resembles the CELP algorithm. The difference lies in the form 
and structure of the code books. Whereas CELP uses a stochastically overlapped code book (each entry 
shares all but two samples with its neighboring entries), VSELPutilizes two sets of basis vectors to generate 
the space of candidate vectors. Thus, the stochastic code book search of CELP corresponds to two code 
book searches in VSELP. There are seven basis vectors for each search. Each basis vector contains 40 
elements. The selection of the basis vectors is fundamental to deriving fast code book search procedures. 
The basis vectors chosen provide for fast orthogondization of the entire space. By orthogonalizing each 
of the seven vectors with a vector V, the entire 128 (27) space, defined by the seven basis vectors, is also 
orthogonalized. 

An open-loop LPC analysis is performed on a frame of speech to derive a set of LPC filter coefficients. 
These coefficients are bandwidth expanded for use in perceptual error weighting filters, H(z) and W(z), 
where H(z) = lIA(z) and W(z) = A(z)IA(zIy). The input frame of speech is filtered through the filter W(z) 
to obtain a perceptually weighted frame of speech. The analysis by synthesis proceeds with three code 
books (unlike CELP, which proceeds with two). First, the adaptive code book is searched and the resulting 
best entry and gain are found. This entry multiplied by its gain factor is orthogonalized with the first set 
of seven basis vectors. Thus, the second code book search can be performed independently of the first code 
book search. The new set of basis vectors is used form the code book for the second search. The best entry 
and gain are found for this code book and orthogonalized with the second set of basis vectors. Finally, the 
third code book search is performed. The gains of each of the three code book searches are jointly quantized 
and transmitted with the three code book indices to the receiver. 

The basic blocks in the VSELP coder are: 

Tenth-order LPC analysis (spectrum predictor) 
Long term (pitch) predictor 
Adaptive (pitch) code book search 
First basis vector code book search 
Second basis vector code book search 
Vector quantization of the code book gains 



The primary VSELP parameters are outlined in Table 1. 

Table 1. Primary VSELP Parameters 

Symbol Parameter Value 
SR Sampling rate 8 kHz 

N F Samples per frame 160 

N~~ Samples per subframe 40 

N P LPC filter order 10 

MI No. basis vectors (1) 7 

M2 No. basis vectors (2) 
BWEXP Bandwidth expansion 

LTFORD Long term filter order 1 

The VSELP algorithm has been developed from references [I] and [2]. These references contain 
information pertaining to the high-level description of the algorithm and provide no actual implemented 
software (high-level or assembly). 

Bit Allocations 

Table 2 shows the bit allocation for the VSELP frame. The frame energy (RO) and reflection coefficients 
(LPC1-LPC10) are sent once per frame, while the pitch lag (LAG1-LAG4), code book indices 
(CODE1-1-CODE1-4, CODE2-1-CODE2-4), and gain indices (GSPO-1-GSPO-4) are sent four times 
per frame. 

The total number of bits per 20-millisecond speech frame is 159, yielding a voice coder bit rate of 7950. 



Table 2. VSELP Frame Bit Allocation 

Parameter Bits Description 

LPCIO 

LAG I 

LAG2 

LAG3 

LAG4 

CODE1-1 

CODEl-2 

CODEI-3 

Frame energy 

I st reflection coefficient 

2nd reflection coefficient 

3rd reflection coefficient 

4th reflection coefficient 

5th reflection coefficient 

6th reflection coefficient 

7th reflection coefficient 

8th reflection coefficient 

9th reflection coefficient 

10th reflection coefficient 

Lag, SF 1 

Lag, SF 2 

Lag, SF 3 

Lag, SF 4 

I st CB index, SF 1 

1 st CB index, SF 2 

I st CB index, SF 3 

1 st CB index, SF 4 

2nd CB index, SF 1 

2nd CB index, SF 2 

2nd CB index, SF 3 

2nd CB index, SF 4 

GSPO-1 8 Gain index, SF 1 

GSPO-2 8 Gain index, SF 2 

GSPO-3 8 Gain index, SF 3 

GSPO-4 8 Gain index, SF 4 



Perceptual Weighting 

Perceptual weighting of the input speech signal (or the error signal) improves the performance of the coder. 
The high-energy formant regions of the speech spectrum mask noise better than lower energy portions of 
the spectrum. The error signal generated by each synthesizer pass is weighted appropriately to capitalize 
on this perceptual effect. The filter amplifies the error signal spectrum in nonformant regions of the speech 
spectrum and attenuates the error signal spectrum in formant regions. Thus, an error signal whose spectral 
energy is concentrated in formant regions of the speech is considered better than one whose spectral energy 
is not located under formants. 

Open-Loop LPC Analysis 
Each incoming speech frame is processed through an open-loop LPC analysis to generate the filter 
coefficients used in the remaining portions of the algorithm. The input speech is first windowed using a 
Hamming window, then an autocorrelaion is performed and the result is normalized based on the energy 
of the first coefficient of the autocorrelation. 

The autocorrelation coefficients are then windowed for bandwidth expansion and spectral smoothing using 
a rectangular (in frequency) window. The smoothed autocorrelations are the input to a Leroux-Guegan 
routine, which transforms the autocorrelation parameters into reflection coefficients. The Leroux-Guegan 
algorithm was chosen because it is ideal for fixed-point implementation and is very efficient. 

A stability check is performed in the Leroux-Guegan algorithm by monitoring the rms value. If the rms falls 
below 0, the Leroux-Guegan is terminated, and the previous reflection coefficients are used. This 
instability can occur from ill-conditioned autocorrelation coefficients. 

Interpolation 

Because the reflection coefficients generated by the LPC analysis represent the spectrum of the speech for 
one frame centered over the fourth subframe, the coefficients for the remaining subframes are interpolated 
from the current and the previous frame's coefficients. The direct form-filter coefficients are linearly 
interpolated. The following table shows the interpolation scheme: 

ai = (0.75)ai(previous) (0.25)ai(current) subframe 1 formula 

ai = (O.5O)ai(previous) (0.50)ai(current subframe 2 formula 

ai = (0.25)ai(previous) (OJ5)ai(current subframe 3 formula 

ai = ai(current) subframe 4 formula 

Interpolating the direct form coefficients can result in an unstable filter; therefore, the resulting coefficients 
must be checked for stability. For the first, second, and third subframes, the filter coefficients are converted 
to reflection coefficients. If any of the resulting reflection coefficients' magnitudes are greater than 1, then 
the interpolation process has produced an unstable filter. To remedy this instability, the filter coefficients 
for the subframe are replaced by the uninterpolated filter coefficients. For the first subframe, the previous 
frame's uninterpolated filter coefficients are used. For the third subframe, the current frame's 
uninterpolated filter coefficients are used. The second subframe uses the uninterpolated filter coefficients 
from the frame (previous or current) that has the higher energy. For the case when the energies are equal, 
subframe 2 uses the uninterpolated filter coefficients from the previous frame. 



The following data flow illustrates the procedure for quantization and interpolation of the LPC filter 
coefficients. 

Figure 1. LPC Filter Coefficient Quantization and Interpolation 
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Long-Term Predictor 

The long-term filtering operation (adaptive code book search) for VSELP is similar to the general CELP 
long-term filtering operation. The long-term filter is given by: 

To accommodate lags less than the subframe size (L c NSF), the equation is modified such that the filter's 
output is only a function of the filter state at the start of a subframe. 

The flr(x) function truncates the fractional portion of x, returning only the integer portion of x. For L I 
NSF, the equations are identical. For L c NSF, the flr function will evaluate to 2 when n = L, as depicted 
in Figure 2. 



Figure 2. Adaptive Code Book Search 
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In Figure 2, the portion of the adaptive code book utilized (call this subvector bL) is of length NSF and starts 
at the index defined by the current lag value in the search procedure. For L r NSF, this procedure is 
straightforward because the length of bL fits (see Figure 2) inside the adaptive code book. The VSELP 
algorithm supports lags from 20 to 147; therefore, a special situation exists when the lag (L) is less than 
NSF. In this case, the bL vector is placed such that a portion of it hangs over the adaptive code book. These 
elements of the adaptive code book (long-term filter state) do not exist yet. The flr function of equation [ 2 ]  
remedies this by doubling the lag (code book index value). This results in copying the first NSF-L 
elements of  the bL vector to the ending NSF - L elements. 
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Figure 3. Code Book Search Signal Flow 
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For each lag (20 I L I 146), a vector called bL(n) of length NSF is extracted from the adaptive code book. 
This vector is filtered through the bandwidth-expanded LPC filter H(z). The resulting vector, b'L(n), is 
compared to the input vector p(n). The p(n) vector is the perceptually weighted input speech vector minus 
the zero-input response of H(z). The zero-input response is subtracted from the input speech to remove any 
of the ringing of the H(z) filter caused by the previous subframe. The bL vector that produces the minimum 
mean square error (MSE) (or maximum match score) compared to p(n) is chosen as the best vector from 
the adaptive code book. The lag L that produced this bL vector is transmitted to the receiver. The match 
score is defined as: 

where: 

p'(n) 

H(z) 

NSF- l 

CL = 1 bl,(n)p(n) 

e(n), Eng 
Calc 



In digital cellular VSELP, P is restricted to positive numbers; therefore, only lags with a positive CL are 
considered in the search procedure. If no lag with a positive CL can be found, the adaptive code book is 
disabled. The lag is coded using seven bits, yielding 128 possible lag values. Since only 127 of these values 
are valid (20 5 L 5 146), one lag value is reserved to disable the adaptive code book search in the decoder. 
It should be noted that the gain coefficient is not coded at this time. After all three code vectors are 
determined, a joint optimization is performed on the three gain terms, P, 71, and $. 

Our implementation precomputes all of the correlations and energies and stores them. The temporary 
storing of these parameters is not strictly necessary; however, it allows us to find a scale factor so the search 
can be performed utilizing maximum dynamic range. Preserving dynamic range is very important for a 
proper pitch search. 

Code Search Algorithm 

Each of the two code books is constructed from a set of M basis vectors. These vectors are combined 
linearly to form a code book of size 2M. The code book vectors are described by: 

where v, is the mth basis vector and ui is the ith code-book vector. The value of 0 is either +1 or -1 and 
is formulated as follows. Each of the code book vectors, ui, is indexed by i. If the indices are viewed in 
binary form, M bits are required to represent the index space. If the LSB of the index is defined as bit 1 and 
the MSB is defined as bit M, then €Ii, can be defined as: 

If (bit m of index i = 1) 

then Oim = +1 

If (bit m of index i = 0) 

then €Iim = -1 

The following provides an example for the trivial case when M = 2. This defines a code book size of 22, 
or 4. In this case, only two basis vectors are required, namely vl and v2. Each of the four code book vectors 
is developed below. 

It should be noted that ug = -u3 and ul = - u2. These are called complementary code book vectors, and this 
property is exploited in the code book search to reduce computational requirements. 

The VSELP code book structure was defined above for a static single code book. The formula below 
expands the notation to describe a VSELP structure with multiple static code books. From equation (6):  



For digital cellular VSELP, k = 1 or 2; that is, two static code books are used. The three code books are 
searched sequentially. First, the adaptive code book is searched for the optimal vector assuming yl = 0 and 
y2 = 0. The technique used in searching the adaptive code book is described above. For the stochastic code 
book searches, it is necessary to generate the zero-state response of each code vector to H(z). This is 
accomplished by filtering each of the M (M=7) basis vectors for each code book through H(z) with the 
history of H(z) set to 0 prior to filtering each vector. The resulting code vectors are defined by equation (8): 

where qk,,(n) is the zero-state response of H(z) to the basis vector vk,,(n). 

The result of the first search is the optimal lag value and the optimal bL(n) vector. The bL(n) vector times 
its gain, p, represents the adaptive code book's contribution to the excitation signal. Next, the first 
stochastic code book is searched, given bL(n). This results in an optimal code vector and corresponding 
index (I) for the first code book, fl,l. Finally, the second code book is searched given b ~ ( n )  and fl,I(n). This 
results in an optimal code vector and corresponding index (H) for the second code book, f2,H(n). 

All of the searches in this implementation take full advantage of the 'C5x MAC instructions and are 
optimized for speed. 

Orthogonalization of the Code Vectors 

The error signal generated after each of the code vectors from each code book is selected is: 

and 

NSF-1 

Total weighted error = 1 e2(n) 
n d  

Given @ =  0 and bL(n) for the first code book search, optimal values for P, yl, and f l ,~(n)  must be found. 
This however, would be too computationally expensive for real-time performance. If the b ' ~  vector and 
the each of the code vectors fl,I are orthogonal, then yl and the code vector can be jointly optimized 
independent of P. By orthogonalizing each of the basis vectors to the b'L(n) vector, the entire space of code 
vectors is orthogonalized. The Grahm-Schmidt algorithm is used to perform this orthogonalization as 
follows: 

and 

NSF-I 

Ym = 1 bVn)q,,.(n) for 1 r m r M 
nsO 



The orthogonalized, filtered basis vectors for the first code book are defined by: 

The orthogonalized, filtered code vectors for the first code book are defined by: 

M 

f ,,,(n) = 1 Oi,,,q'l,m(n) for 0 r i I, 2M-I 
m= 1 

The new expression for the total weighted error for the first code book search is 

NSF 

E'1.i = z ( p ( n )  - y,f'l,i(n))' 

This expression is independent of b and bL and also assumes no contribution from the second code book. 
The value for the gain is computed for each code vector but is not encoded yet. As stated previously, the 
value for the gains of each of the vectors contributing to the excitation vector are jointly optimized after 
all searches are complete. 

The second stochastic code book search is identical to the first except that the basis vectors for the second 
code book are orthogonalized to both the bL(n) vector and to the optimum code vector from code book 1, 
f'l,I(n). This orthogonalization can be performed sequentially. The filter basis vectors, q~,.,(n), are first 
orthogonalized to bL(n). The resulting vectors are then orthogonalized to f '  l,~(n). 

The orthogonalized, filtered code vectors for the second code book are defined by: 

M 

f = 1 0imq'2,m(n) for 0 5 i r 2M-1 
m= 1 

The new expression for the total weighted error for the second code book search is 

NSF 

''2, I ( P ( ~ )  - y2f 2,i(n))' 

For the implementation of the fixed-point VSELP, a modified Grahm-Schmidt algorithm was used. The 
difference between this Grahm-Schmidt and the one just presented is that this one is scaled by an energy 
constant. This scale washes out in the code book search, yet avoids an expensive division and preserves 
dynamic range. 

Gray Code Search 

In this section, a fast search procedure for finding the best code vector from the stochastic code book is 
developed. As with the adaptive code book search, the vector that minimizes the MSE (that is, that 
maximizes the match score) is sought. Note that the subscript denoting the first or second code book has 
been dropped for clarity. The code search procedures are identical for each code book. The match score 
is defined as: 



The search procedure calculates the match score for each vector in the code book. The best code vector 
(indexed by i) will have the highest match score of all code vectors in the code book. The computational 
requirements for one subframe search of one code book is 2 x NSF multiply-accumulates (MACS). This 
results in a code book search computational requirement of: 

MACS codebooks ) x 4 ( S u F f E  frames 
NSF 2M(code book ) 2( subframe 

) x 50(- 
S 

) (19) 

6 MACS) = 4.1 x 10 (T 

To reduce this complexity, the structure of the VSELP code books is exploited. Defining the correlation 
between the p(n) vector and the filtered code vector, f'i(n): 

NSF 

ci = 1 f ip(n) 

Expanding f'i(n) using equation (8) yields: 

Rearranging the summations yields: 

Defining 

then substituting this back into 22 yields: 

Defining the gain of the filtered code vector, f'i(n): 

NSF-I 

Gi = 1 (f 1(n))2 



Expanding f'i(n) using equation (8) yields: 
NSF-I M M 

Rearranging the summations yields: 
M M NSF-I 

= C 1 e i m e i j  1 q9j(n)q7m(n) 
m = l  j = l  n =  0 

Defining 

and substituting back into equation (27) yields: 

Because: 

OijO,, = OimO1j 

and: 

O i j O i m  = 1 for j=m 

the equation can be expanded to: 

Given two code words indexed by i and u such that u differs from i by only one bit (that is, bit position v), 
then: 

0," = -€Iiv (31) 

cum = eim form !=  v (32) 

The correlations Ci and C, are related by: 

C ,  = Ci + 0,,RV 

The gains Gi and G, are related by: 
v-l M 

Gu = Gi + 1 eujeuvDjv + 2 eujeuvDvj 
j = l  J = V  + 1 



If the code book is searched in a sequence such that the code vector index changes by only one bit from 
the previous code vector index, then the previous set of equations leads to a very efficient method to search 
the code book. By sequencing the indices using a Gray code, only one bit will change as the indices are 
generated. In addition, only half of each code book needs to be searched because the other half is the 
complementary set of code vectors (differing only by sign). The sign of Ci is checked to determine which 
of the complementary code vectors yields a positive gain y. The resulting computational requirements are 
now reduced to: 

2M CR = 2 X 4 X 50 x {[2 x M1 x NSF + M1 + 281 + [y x (M1 + 2)]} 

Gain Quantization 
The gain values for each of the three code book contributions to the excitation vector are jointly optimized 
using a vector quantization table. The development of the quantization procedure can be found in [I]. The 
parameters required for the joint vector quantization of the gain values are: 

where c'k(n) denotes the kth (k = [O ... 21) excitation contribution vector filtered through the H(z) synthesis 
filter. Therefore, the upper triangular matrix R,, is the crosscorrelation matrix of the three filtered code 
book excitation contributions. 

where p(n) is the perceptually weighted speech minus the ringing in the synthesis filter from the previous 
frame. The three-element vector Rpc is the crosscorrelation vector of the three filtered code book excitation 
contributions with the p(n) vector. 

where ck(n) denotes the kth (k = [O ... 21) excitation contribution vector (not filtered). Thus, the vector R,(k) 
denotes the energy in each of the three code book excitation contributions. 

Equation (39) defines the parameter RS, the energy in the LPC filter's residual signal. 
NP 

RS = NSF x R9,(0) x n ( l - r 1 2 )  
I =  1 

where R'q(0) is the average power in the current subframe of speech and the product series is the normalized 
error power in the synthesis filter. R'q(0) is interpolated from Rq(0) at the subfrarne rate using the strategy 
in Equations 40 - 42. 



R'q(0) = Rq(0)prevlous frame for subframe 1 

R'q(0) = Rq(0)current frame for subframes 3 , 4  

R' JO) = JR~(o) previous frameRq(0)current frame for subframe 2 

The error equation used in searching the quantization tables is: 

where Po is the fraction of the coder excitation energy due to the adaptive code book contribution, PI is the 
fraction of the coder excitation energy due to the first stochastic code book, and GS is an energy tweak 
parameter (GS = RIRS). Note: (1 -PO -PI) is the fraction of the coder excitation energy due to the second 
stochastic code book. The definitions of a through i follow: 



The values PO, P1, and GS are vector quantized in a three-column table of length 256. For each subframe, 
the index of the elements that minimize the error equation (43) is selected. The resulting code book gains 
are defined by the following equations, where the subscript vq indicates the index of the best table entry. 

For the fixed-point implementation, the energies are calculated and converted up front to floating-point 
format. The parameters are then calculated in floating point because of the wide dynamic range. These 
parameters are then scaled back to the 16-bit integer domain according to the largest of the parameters 
(hence, the ratios between parameters are maintained.) 

Speech Decoder 

The speech decoder resembles the encoder with the following exceptions: 

The coefficients for the LPC synthesis filter are not the bandwidth-expanded ones. They are 
taken from the RC coefficients in the RX bitstream. 

There is no closed-loop search procedure. 

There is an adaptive postfilter in the signal flow. 

The coefficients for the filter A(z) are interpolated at the subframe rate from the reflection coefficients 
received at the frame rate. For each frame, the quantized reflection coefficients specified by the bitstream 
are converted to direct form-filter coefficients. They are then interpolated using the same scheme as defined 
in the interpolation section. The three code book indices are used to look up the correct vector in each of 
the code books. Each selected vector is multiplied by its corresponding gain value as calculated using 
equations (53), (54), and (55). The three scaled code book contributions are then summed to form the 
excitation signal and applied as input to the LPC synthesis filter A(z). In addition, this excitation signal is 
fed back into the adaptive code book. The output of the LPC synthesis filter is called the nonpostfiltered 
speech vector. To mask the effects of quantization in the coder, the speech is filtered through a spectral 
postfilter. 



Adaptive Postfilter 

The adaptive postfilter shapes the noise spectrum to match the speech spectrum, thus hiding the effects of 
quantization in the VSELP coder beneath the formants of the speech signal [12]. Given the speech synthesis 
filter, 1 /A(z), the postfilter is defined as: 

where 0 5 bwfl 5 bwf2 < 1. With bwfl and bwf2 defined as bandwidth expansion factors (like the 
bandwidth factors used in the perceptual-weighting filter), this filter boosts the formants in the speech 
signal. Several methods exist for the implementation of the postfilter. Two methods are outlined below. 

TIA Postfilter 

A problem with the postfilter described above is the accentuation of the speech signal's spectral tilt. This 
results in the attenuation of the higher frequencies of the speech spectrum. The method described in [I] 
requires the use of a Levinson-Durbin recursion after the bandwidth expansion of the speech correlation 
coefficients. The denominator coefficients are converted to autocorrelation coefficients and then 
bandwidth expanded by w(i) = 0.923077(~ Xi) .  Finally, these autocorrelation coefficients are converted 
back to filter coefficients via a Levinson-Durbin recursion. This proves to be computationally expensive 
and provides no quality improvement compared to the method described below. In addition to the spectral 
shaping filter, a brightness filter is used to boost the high frequencies. The speech, after passing through 
the filter H(z), is scaled to remove any gain introduced by the filter. 

The scale value is then passed through a first order low-pass filter to remove discontinuities: 

Scale'(n) = = 0.9875 x Scalel(n-1) + 0.125 x Scale (58) 

Modified Postfilter 

Rather than adjusting for the spectral tilt in the postfilter via adjusted numerator coefficients, this method 
utilizes an adaptive brightness filter. The first reflection coefficient of the numerator filter is used as the 
coefficient for the brightness filter. This method is described in [14]. This results in the same spectral effect 
as the specified method, yet it is computationally less expensive. This is the method we used for our 
implementation. 



Features of VSELP 

The code book described above allows a fast code book search to be conducted. Memory requirements are 
also reduced since only the basis vectors are stored (not the entire code book). The selected code book index 
is robust to channel errors because an error in the index changes only the sign of one of the basis vectors. 
Most importantly, the gains associated with each of the vectors contributing to the excitation vector are 
jointly optimized and quantized. 

TMS320C5x Real-Time Implementation 

The DSPSE implementation of VSELP on the TMS320C5x is written entirely in assembly code so that it 
can fit on one 'C5x running at 20 MIPS. The two main functions, analysis and synthesis, are completely 
modular and C callable. The memory and MIPS requirements are listed below. 

Processing Requirements 

The table below lists the processor utilization requirements for the TMS320C5x VSELP vocoder software. 

Table 3. VSELP Vocoder Processor Requirements 

t values reflect execution from zero-wait-state external SRAM and use of TMS320C5x internal RAM. 

Application 

Analysis 

Synthesis 

Memory Requirements 
The table below lists the memory requirements for the TMS320C5x VSELP vocoder software. All memory 
specifications are in units of 16-bit words. 

Table 4. VSELP Vocoder Memory Requirements 

MIPS 
Maximum 

16.10 

3.60 

The three on-chip memory blocks are bO, bl ,  and b2 and are used as follows: 

Function 

Analyzer 

Synthesizer 

Full Duplex VSELP 

Block bO is a special block in that it is the only segment of RAM that can be switched into program memory. 
This feature is useful for filtering operations such as the MACD instruction. Because this memory is 
dynamically switched as program or data memory, no static variables reside in this block. However, this 
block is used as temporary memory in the code book searches. 

Utilization at 
20 MIPS~ 

81% 

18% 

Block b l  is used in two ways. The first 350 locations are used as temporary scratch-pad memory. The 
remaining locations are used for time-critical buffers such as the intermediate weighted excitation vectors 
and the stack. 

ROM 

8.2K 

3.32K 

9.OK 

MIPS 
Average 

15.30 

3.32 

Utilization at 
20 MIPS~ 

77% 

17% 

On-Chip RAM 

1.5K 

1.1K 

1.55K 

External RAM 

0.23K 

0.23K 

0.42K 

Total RAM 

1.73K 

1.33K 

1.97K 



Block b2 is used to overlay local temporary variables. This strategy not only saves memory but also allows 
all local variables to be placed in fast dual-access RAM for maximum DSP performance. 

Speech Coder Quality 

Quality measures were used to compare the speech output of the fixed point VSELP (TMS320C5x) with 
a C model of the TIA reference synthesizer. The input bitstream for each of five speakers (three male and 
two female) produced five reference files, both postfiltered and nonpostfiltered. This same bitstream was 
used as input to the 'CSx implementations of the VSELP coder. The resulting speech files were compared 
to the reference files using the SNR measure described below. 

SNR Measurements 

To track the progress of algorithmic modification, the segmental SNR measure was used. The segmental 
SNR is the average of the each subframe's SNR over some segment of speech. 

NSF- l 

1 si(n)' 

where L is the length of the speech segment in subframes, si is the input speech, and sp is the synthetic 
speech. This measure is used in testing vocoder implementations against the reference vocoder. For the five 
reference files, the output of the synthesizer was compared to the output of the reference vocoder's 
synthesizer. All the SNR values for the fixed-point implementation were distributed between 25 and 30 dB. 

DTMF Performance 

The VSELP algorithm must pass the dual-tone multifrequency (DTMF) signals to allow for remote 
signaling and dialing. Several DTMF files were recorded and processed through the algorithm. The Fourier 
spectra were analyzed for proper frequency content. In addition, the resulting files were used to signal the 
central office and correctly initiate a telephone connection. 

A Typical Digital Cellular Vocoder Configuration 

Figure 4 illustrates a possible digital cellular system configuration. Analog speech sampled by the AID 
converter is processed by the TMS320CS 1 digital signal processor to produce a VSELP coded bitstream. 
This bitstream is passed through the error-coding block to protect the data against channel errors. Finally, 
the error-coded VSELP bitstream is modulated and transmitted to the cellular base station. Since the digital 
cellular telephone is full duplex, incoming RF data is simultaneously processed in the reverse order to 
produce speech. The incoming signal is demodulated and error corrected before the VSELP synthesis 
processing and D/A conversion. 



Figure 4. Possible Digital Cellular System Configuration 

Analog Speech RF Cellular Signal 

DSP Chip 

1 

Code Availability 

- 

The associated software is available for licensing from DSP Software Engineering Incorporated, 165 
Middlesex Turnpike, Suite 206, Bedford, MA 01730 

- 
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Abstract 

Programmable digital signal processors are commonly used in U.S. digital cellular terminal designs. All 
digital cellular transmitters employ convolutional and CRC codes to protect against channel-induced 
errors. Receivers typically use Viterbi decoders and CRC syndrome checks to verify that the decoded data 
contains no errors. This paper presents selected implementation examples of the error-protection and 
correction functions of various cellular data channels using the TMS320C5x digital signal processor 
family. 

Introduction 

Programmable DSPs are widely used in the new U.S. digital cellular (USDC) radio designs. The primary 
function of the DSPs in these designs is baseband signal processing. However, many designs are also using 
the newer DSPs as the system coordinator in the radio, a task typically performed by a microcontroller. This 
trend is caused by a) system care-abouts of low cost, low power, and small form factor, and b) newer 
generations of DSPs (such as the TI TMS320C5x family) that have architectures suitable for 
microcontroller-type functions. 

One of the several signal-processing-intensive tasks that a digital cellular radio needs to perform is error 
protection and correction. The IS-54 voice channels transmit voice and control information in digital form. 
Although these radio links are primarily used for digital voice transmission (VSELP), a portion of the 
channel capacity is reserved for control information. This relatively slow bit-rate link is used for 
background control information such as broadcast messages, mobile-assisted handoffs, etc. This is called 
slow associated control channel (SACCH) in IS-54 terminology. Another type of signaling channel is 
called fast associated control channel (FACCH). However, FACCH messages are not sent simultaneously 
with the voice data. They replace the compressed voice data whenever necessary. Figure 1 shows how these 
messages are multiplexed with voice data. 

Figure 1. Voice and Control-Channel Multiplexing Over One Time Slot 
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These three digital data channels employ extensive error-protection and correction mechanisms to protect 
all or most of the transmitted information. Convolutional codes, CRC codes, and bit/frame interleaving 
techniques are used for this purpose. The convolutional coding schemes used by these three channels are 
not identical and require slightly different decoding methods to be employed by the receivers. Despite these 
minor differences, the basic decoding algorithm used by the three channels is usually a Viterbi algorithm. 
In the rest of this paper, these channel formats are explained separately, a suitable decoding scheme is 
presented, and its implementation details are discussed. 

VSELP Channel Format 

The VSELP encoder compresses the digitized speech from 64 kbps to 7.950 kbps. Additional information 
is added for error protection to increase the total data transfer rate to 13 kbps. The VSELP algorithm 
operates on a frame-by-frame basis in which each speech frame is 20 ms in duration. The VSELP encoder 
generates 159 bits of compressed speech for each speech frame. These bits are grouped into two classes: 
77 class-I bits that need error protection and 82 class-I1 bits that are sent without any error protection. 
Class-I bits are protected from channel-induced errors by applying convolutional encoding. Furthermore, 
error detection is also provided by applying a 7-bit CRC code to the 12 most perceptually significant class-I 
bits. Finally, this 260-bit speech frame is interleaved over two time slots to protect against burst errors. 

Figure 2. Error Protection for VSELP Data 
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Figure 3. Convolutional Encoder for VSELP Data 

The VSELP convolutional encoder is a rate- 112 framed encoder with a constraint length (denoted by M) 
of 5. The frame size is 89 bits (see Figure 2), which consists of 77 class-I bits, a 7-bit CRC, and 5 tail bits. 
Both the initial and the final states are 0. The trellis diagram for this encoder consists of 32 states (that is, 
2M) with each state in symbol interval n connected to two states in the next time interval n + 1. The basic 
building block of this trellis is shown in Figure 4. 

Figure 4. Representative Trellis Section for VSELP Convolutional Encoder 
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Due to the rate-112 encoding scheme, each state is linked to two states in the previous time interval, as 
shown in Figure 4. The Viterbi algorithm operates on received data by expanding the trellis over a frame 
length of 89 symbol intervals. Refer to [4] and [5] for general Viterbi algorithm descriptions. A 32-element 
accumulated cost metric is set up where each element corresponds to one state. Each link from an old state 



to a new state has a transition cost associated with it. For instance, Mx is the transition cost from state i to 
state j in Figure 4. These transition costs. which are computed at the symbol rate, reflect the current channel 
conditions. Each transition cost indicates the probability of a state i to state j transition over one symbol 
interval. Consider Figure 4 where state j at time interval n + 1 can be reached from either state i or state i + 16 
in time interval n. The Viterbi algorithm selects the more likely transition into state j by comparing the total 
accumulated cost of the two possible links. The accumulated cost of each link is computed by adding the 
current transition cost to its previous accumulated cost. For example, new accumulated costs of the two 
links entering state j in Figure 4 are: 

new-acc-cost u] = old-acc-cost [i] + Mx 
(1) 

new-acc-cost Ij] = old-acc-cost [i + 161 + My 
(2) 

The smaller of the two values is selected and the corresponding link is retained for further processing in 
the next time interval. The other candidate is discarded. This process of selecting one transition entering 
a state is performed on all 32 states at each symbol interval. Path history of every state is maintained for 
the entire 89-symbol-long frame. When one frame is processed completely, the state 0 in the last time 
interval is selected, and its associated path is considered the most likely received path. This path is traced 
to find the most likely received bit sequence. As shown in Figure 2, the encoder pads five tail bits (all 0s) 
at the end of each message frame. This ensures that the last encoder state is always 0. Additionally, the initial 
state of the encoder is also 0 by definition. This requires special consideration by the decoder during 
initialization of the accumulated cost metric at the beginning of each frame. To assure that state 0 is selected 
by the algorithm at the beginning of each frame, it is initialized with a lower cost value than that of the other 
3 1 states. 

This algorithm can be implemented more efficiently if the underlying symmetry of the trellis structure used 
is considered. As shown in Figure 4, a pair of states in a symbol interval are connected to another pair of 
states in the next interval with no other connections to the rest of the trellis. Therefore, all state transitions 
during one symbol interval can be uniquely broken down into 16 butterfly-like structures similar 
to Figure 4. Furthermore, only two transition cost values are associated with the four links of each butterfly 
(Mx and My in Figure 4; in some implementations, Mx is always equal to -My, which leads to further 
simplification of the structure). This symmetrical structure allows a subroutine that will operate on one 
butterfly at a time, computing new accumulated cost metrics, selecting the best transition, and storing the 
path history. This subroutine (or a macro) is invoked 16 times at each symbol interval to update 32 state 
transitions. Example 1 lists the pseudocode for this function. 



Example 1. Pseudocode for Trellis Expansion 

Acc-Metricl[n] +Curr-M[x]->AccB 

Acc_Metricl[n+l6] + Curr-M[y] -> Acc 

min(Acc,AccB) -> Acc_Metric2[m] 

If (Acc > AccB) then 

shift 1 in Trans-Tbl[i] 

else 

shift 0 in Trans-Tbl[i] 

Acc-Metricl[n] +Curr-M[y]-7AccB 
Acc_Metricl[n+l6] + Curr-M[x] -7 Acc 

min(Acc,AccB) -> Acc_Metric2[m+l] 

If (Acc > AccB) then 

shift 1 in Trans-Tbl[i+l] 

else 

shift 0 in Trans-Tbl[i+l] 

The pseudocode shown above performs necessary computations for two states. similar to the butterfly 
structure shown in Figure 4. There are two accumulated cost metrics used by the code, Acc-Metric 1 [I and 
Acc_Metric2[]. One contains previous cost metrics and the other is used to store new accumulated cost 
metrics. At each symbol interval, roles of the two arrays are reversed. Only two array elements need to 
be accessed by the subroutine. The offsets between those two elements are always 16 and 1 for the two 
arrays, respectively. This allows for simple indexing of these arrays regardless of which state is currently 
being accessed. Similarly, only two current metric values Curr_M[] are accessed by the function. The offset 
between these two elements can also be made equal to 1 if this array is set up in the form of a circular buffer. 
Finally, since the path history is stored for the two states j and j + 1 in time n + 1 ,  the two elements of the 
transition table Trans-Tbl[] that need to be accessed are also offset by 1. 

Considerable coding efficiency is gained by taking into account these structural symmetries of the trellis 
butterfly. As showninpseudocode above, the accumulator and the accumulator buffer are used to hold total 
accumulatedcost of the two links. The TMS320C5x DSPs support special instructions to select the smaller 
(or larger) of the two values. The CRLT instruction and the conditional-execute instruction (XC) are used 
in this implementation to select the lower cost link and update the accumulated cost array and the transition 
table. Since the accumulated cost arrays are accessed only in steps of 1 or 16, indirect addressing modes 
of postincrement and postmodification by an index of 16 are used to step efficiently through the table. The 
current transition cost array, Cum-M[], consists of four elements representing four symbols of the rate- 112 
encoder. It is set up as two circular buffers, each containing two elements. In Example 2, the code listing 
shows the function implemented in 'C5x assembly code. It is set up as a macro that is invoked 16 times 
to update all 32 states per time interval. 



Example 2. Trellis Expansion Macro In 'C5x Assembly Code 
* 
* Entry Conditions: 
* 
* ARP = AR1 
* INDX= 16 
* AR1 -> AccMa[n] ;n=0..31 
* CurrMPtr -> CurrM[i] ;i=0..3 
* Circ.buffers: CurrM[O..l] and CurrM[2..3] 
* AR3 -> AccMb[m] ;m=0..31 
* AR4 -> Trn[k] ;k=0..(6*32) 
* 
* Exit Conditions: 
* 
* AR1 -> AccMa[n+l] 
* CurrMPtr -> CurrM[i] 
* AR3 -> AccMb[m+2] 
* AR4 -> Trn[k+2] 
* 
Texpand .macro CurrMPtr 

lacc *O+,CurrMPtr ; load AccMl[n] 
add *+,arl ; add CurrM[x] 
sacb I 

lacc *O-,CurrMPtr ;loadAccMl[n+l6] 
add *, ar3 ; add CurrM[y] 
crlt ; change to crgt for correlation type metric 
sac1 *+,ar4 ; min(pathllpath2) -> AccM2[m] 
lacc *,  1 ; load Trn[i] 
xc lrc ; if pathDpath2 
add # 1 ; shift 1 in Trn[i] 
sac1 *+,arl ; save Trn[i] 

* 
lace *O+,CurrMPtr ; load AccMl[n] 
add *+,arl ; add CurrM[y] 
sacb 
lacc *0-,CurrMPtr ; load AccMl[n+l6] 
add *,ar3 ; add CurrM[x] 
crlt ; change to crgt for correlation type metric 
sac1 *+,ar4 ; min(pathl,path2) -> AccM2[m+l] 
lacc *, 1 ; load Trn[i+l] 
xc 11c ; if pathDpath2 
add # 1 ; shift 1 in Trn[i+l] 
sac1 *+,arl ; save Trn[i+l] 

* 
mar *+ 
. endm 



Path History Memory Organization 

Path history is generated by the decoder during the forward pass as it expands the trellis. Given that each 
encoder state can only be reached from one of the two possible states in the previous symbol interval, a 
single bit can be used to store this information. The state transition table Tm[x,y] is a 32 X 6 word matrix 
in which each bit position in a row of elements corresponds to one symbol interval. Each row element in 
a column corresponds to one of the 32 encoder states. In other words, if Tm[x,y] is the matrix 
where x = 0 ... 3 1 ,  and y = 0 ... 5, then x corresponds to the encoder state and (1 6y +bit position) corresponds 
to the symbol interval. 

Figure 5. Transition Table Organization 
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Trace-Back 

Trace-back starts from state 0 in the 89th symbol interval. The corresponding bit in the transition table 
indicates which state is linked to it in the 88th symbol interval. This bit is the decoder output in the 89th 
symbol interval. Next, the decoder jumps to the selected state in the 88th symbol interval, generating the 
next output bit. This procedure is repeated until all 89 symbol intervals are traced back, producing one 
frame of decoded output. Example 3 shows this algorithm in pseudo-C code. 



Example 3. Trace-Back Function - Pseudo-C Code 

state = 0; 

n = 0; 

for (word=6; word>=O; word--) { 

for (bitno=15; bitno>=O; bitno--) { 

if (Trn[state,word].bitno == 0) { 

store 0 in Output[n++]; 

state = state>>l; 

1 
else { 

store 1 in Output[n++]; 

state = (state>>l) + 16; 

1 
1 

1 

This trace-back function is implemented on the 'C5x using its zero-overhead loop structure. Indirect index 
addressing is used to step through the transition table efficiently. The INDX register holds the current state 
ID (0 to 15). Bit-reversed addressing is used to left-shift the INDX register for each iteration. Dynamic bit 
testing is done by using the TREG2 register as a bit pointer to each element of the transition table. 
Example 4 lists this 'C5x assembly routine. 



Example 4. Trace-Back Implementation in 'C5x Assembly Code 

TraceBack: 

lar arO,#O ; arO is n of Trn[n] (0..31) 

lar ar3,#OutBuf ; ar3 -> OutBuf[O] 

lar ar4, #Trn ; ar4 -> Path history table 

lacl #1 

samm dbmr ; initialize mask 

lacl #16-1 

samm brcr ; initialize loop count 

lacl #15 

samm treg2 ; initialize bit pointer 

* 

rptb trace--1 ; loop 16 times 

mar *,ar3 

sar arO,* 

apl *+,ar4 ; save OutBuf[i] 

mar *0+ 

bitt *0-,arO ; test bit(i) of Trn[state,word] 

mar *brO+ ; right-shift INDX by one 

xc 1,tc ; if bit(i) == 1 

adrk 16 ; add 16 to INDX 

sub # 1 I 

samm treg2 ; decrement bit pointer 

trace: 

ret 

FACCH Channel Format 

The FACCH is a signaling channel in parallel with the speech path used for transmission of control and 
supervision messages between the base station and the mobile station. The FACCH replaces the user 
information block (that is, speech data) whenever necessary [I]. An FACCH message block consists of a 
48-bit message frame, a 1-bit continuation flag, and a 16-bit CRC. The standard CCIlT CRC-16 code is 
generated for 49 information bits (1 continuation and 48 message) and eight bits of DVCC color code. The 
FACCH data (48-bit message, 1-bit continuation, 16-bit CRC) is error protected by means of a rate-114 
convolutional code. The resulting 260-bit frame is interleaved over two consecutive bursts in the same 
manner as the VSELP speech frame. 

The rate-114 convolutional encoder has a constraint length of 5. In other words, it operates as a shift register 
of length 5. Each new bit shifted in results in four parity bits being shifted out of the encoder that are 
designated P1, P2, P3, and P4. Figure 6 illustrates the encoder shift register. 



Figure 6. FACCH Rate-114 Convolution Encoder 

The 65-bit input frame to the encoder consists of 48 bits of data, a 1 -bit continuation flag indicating whether 
this is the first word of a message, and 16 bits of CRC code. The encoder does not require five explicit tail 
bits, as was the case with the VSELP rate-112 encoder. It treats each input frame as a 65-bit circular buffer. 
The first five bits in each input frame constitute the initial encoder state (that is, C[4], C[3], C[2], C[1], 
C[O]). The first output bit quadruple (PI, P2, P3, P4) is generated when the sixth bit is shifted in. After 
shifting the 65th bit in, bit 0 is input to the encoder, creating the circular buffer. The final encoder state is 
(C[3], C[2], C[1], C[O], C[64]). Note that after one more shift, the encoder state would return to its initial 
state. In terms of the corresponding trellis structure, this means that there is always a wraparound from the 
final encoder state to its initial state. 

The FACCH decoder is similar to the VSELP decoder except for the following considerations: 

It decodes rate-114 code instead of rate-112 code. 
The encoder frame is 65 bits long. 
Each encoder frame is treated as a circular buffer. 

The basic Viterbi algorithm in this case remains identical to the VSELP rate-112 algorithm. There are two 
paths entering each state from the previous symbol interval. The decoder selects the lower cost link, based 



on its accumulated cost. However, since each output symbol consists of four bits, there are possibly 16 
distinct transition costs that need to be updated at every symbol interval. The rest of the algorithm is similar 
to the speech decoder algorithm except that the frame size is 65 bits instead of 89 bits. 

Since the encoder initial state is not previously known in this case, all states are equally likely in the first 
symbol interval. Hence, all accumulated costs are initialized to 0 at the beginning of each frame. This can 
result in poor initial performance of the decoder under low signal-to-noise (SNR) conditions. According 
to Forney [4], the Viterbi decoder output is unreliable until a path history of four or five times the 
encoder-constraint length is available. Therefore, the first 20 to 25 decoded bits can contain errors. This 
problem can be alleviated by considering the final encoder state (in the 65th symbol interval) and the initial 
encoder state (in the first symbol interval) wraparound. Each received frame is treated as a 65-symbol-long 
circular buffer, and the decoder is fed with a total of 85 symbols (composed of a 65-symbol frame and 20 
repeated initial symbols), thereby generating an artificially long path history. Since 20 initial symbols are 
repeated, a portion of the path history is redundant. Ideally, path history that corresponds to the first 20 
symbol intervals and the last 20 symbol intervals should be identical because it corresponds to the same 
20 symbols. However, the trellis generated for the last 20 symbol intervals is more reliable because it takes 
into account the path history of the previous 65 symbols. Accordingly, the path history of the first 20 
symbols is pruned. This approach is taken to avoid the uncertainty of the decoder decisions during the first 
20 input symbols. After all the symbols are input to the decoder, the best path (of the possible 32 paths) 
is selected based on least accumulated cost. This path is traced back to yield the output bit sequence. 

Code Availability 

The associated program files are available from the Texas Instruments TMS320 Bulletin Board System 
(BBS) at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com. 
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lntroduction 

Error-control coding plays an increasingly important role in today's communication systems. Described 
concisely, error-control coding involves the addition of redundancy to transmitted data so as to provide 
the means for detecting and correcting errors that inevitably occur in any real communications process [I]. 

Such coding techniques are particularly useful for transmission over limited-power channels like 
general-switched telephone network (GSTN). Adding redundancy to the transmitted data and making use 
of soft-decision decoding, the bit-error rate can be reduced considerably without increasing transmission 
power. These coding techniques have proved very useful in the past decade, and many of them have been 
standardized for modems and other communication devices. 

CCITT recommendation V.32 is one such standard that uses trellis-coded modulation and Viterbi decoding 
to achieve forward error correction at a data transmission rate of 9600 bits per second (bps). This 
application report deals with the general theory and implementation of the encoding and decoding 
algorithms required for the V.32 family of modems. 

The architecture of the fifth generation of Texas Instruments digital signal processors (DSPs) is especially 
suited for soft-decision encoding and decoding algorithms. These dynamic programming algorithms often 
make use of looped code, conditional execution, min-max searches, and pointer-addressing techniques. 
The enhanced TMS320C5x core CPU allows zero-overhead looping, multiple-condition branches, 
delayed jumps and calls to minimize execution time, min-max instructions to implement efficient search 
algorithms, and postmodified indirect addressing (which includes indexed, circular, and bit-reversed 
addressing modes). These algorithms can be executed very rapidly since almost all 'C5x instructions take 
only one machine cycle (25 ns) to execute. 

Introduction to the V.32 Standard 

V.32 modems are designed for use on connections on GSTNs and on point-to-point 2-wire leased 
telephone-type circuits. The full-duplex mode of operation is supported using echo-cancelation techniques 
for channel separation. Each channel uses quadrature amplitude modulation (QAM) with a synchronous 
line-transmission rate of 2400 symbols per second (baud). 

QAM is a modulation technique that allows two independent information channels to be modulated into 
a single carrier signal. These two channels are commonly referred to as real and imaginary (or I and Q)l 
components of the signal. A constellation diagram illustrates this concept (see Figure 1). Each point on the 
constellation has a unique set of real and imaginary components. For a 16-point constellation, four bits are 
required to uniquely represent each point. 

If the input data stream is grouped into quad bits (also called symbols), each quad bit can be mapped to a 
constellation point, and corresponding I and Q values are modulated into a QAM signal. V.32 modems have 
a data-transmission rate of either 4800 bps or 9600 bps. At the rate of 9600 bps, either a 16-point or a 
32-point constellation can be used (see Figure 1). Obviously, 5-bit-long symbols are required to map each 
point of a 32-point constellation. 

I and Q components are also referred to as X and Y in literature. Both notations are used interchangeably in this paper. 

79 



The V.32 standard recommends two alternative modulation schemes at 9600 bps: one using a 16-point 
constellation, and the other using trellis (convolutional) coding with a 32-point constellation. When using 
the trellis coding, the input data stream to be transmitted is divided into groups of four consecutive data 
bits. The first two bits of each group are first differentially encoded and then convolutionally encoded to 
generate a set of three bits. The other two bits are not encoded but are passed to the output stage. Thus, each 
output group consists of five bits. These five bits are then mapped into a 32-point (diamond-type) 
constellation. On the receiver end, a maximum-likelihood decoding algorithm (due to Viterbi) is used to 
estimate the transmitted data. 

This report deals with the encoding and decoding algorithms as required for the 9600-bps 32-point 
constellation transmission. The basic encoding algorithm is known as a convolutional encoding scheme, 
and the decoding algorithm scheme is based on the Viterbi algorithm. Although the 32-point constellation 
is used extensively to help decode the signals, the actual modulation/demodulation scheme is not 
implemented in software. 



Figure 1. V.32 Modems 
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Standard V.32 Encoder 

The V.32 encoder (see Figure 2) is divided into two functional blocks: 

Differential encoder 
Convolutional encoder 

The input data stream to the encoder is divided into 4-bit long symbols (Ql,  42 ,  Q3, 44).  Each symbol 
is processed by the encoder, and the resulting output symbol is 5 bits long (YO, Y 1, Y2,Q3,Q4). The output 
symbol is larger than the input symbol because it contains error-correction information in addition to the 
transmit data. 

Figure 2. V.32 Encoder 
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The V.32 standard recommends the QAM technique to transmit data over the channel. Without any error 
correction information, each symbol has four bits, requiring a 16-point constellation as shown in Figure 
2. If a convolutional encoding scheme is employed, each symbol has five bits, and a 32-point constellation 
is required. 

In general, for the same average power, a modulation scheme using a 32-point constellation has higher 
bit-error rate (BER) when compared with a 16-point constellation scheme. This is because the minimum 
Euclidean distance between any two points on a 32-point constellation is relatively small, which decreases 
the noise margin. However, convolutional encoding introduces constraints in transforming an input symbol 
to a 5-bit output symbol. Specifically, it does not allow two consecutive output symbols to be in the eight 
neighborhood positions of each other, as seen on the constellation diagram. The minimum distance 
between two consecutive output symbols is thereby increased, thus providing an overall performance gain 
of 3 dB. 



The differential encoder provides protection against 180" phase ambiguity in the channel. The following 
two equations describe the differential encoding algorithm: 

Yl, = ~ l , @ Y l , - l  

~ 2 ,  = (Ql, y ln-1)@y2n-1 @ Q2n 

Notice in Figure 3 that only two input bits are differentially encoded. Because of differential encoding, 
errors caused by phase reversal in the channel are not allowed to propagate, and the information sequence 
is reconstructed by the receiver except for the errors at points where phase reversal has occurred [I]. 

Figure 3. Viterbi Encoder - Convolutional Encoding Scheme 
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The convolutional encoder takes the two differentially encoded bits (Yl,  Y2) and generates an output bit 
YO. YO is often called the redundant bit because it carries only the forward error-correction information. 
Functionally, the convolutional encoder is a 3-bit shift register interconnected by AND and XOR logic. A 
simplified diagram of a convolutional encoder is shown in Figure 3. By convention, the three bits of 
encoder memory (SO, S1, and S2) are called delay states, and the set of output bits (YO, Y1, and Y2) are 
known as path states. The idea behind this terminology will become obvious later when the trellis structure 
is considered. The size of encoder memory is sometimes referred to as its constraint length. 

One important constraint is imposed by the encoder. Given a particular set of delay states (SO, S 1, and S2), 
not all path states are possible in that time interval. For instance, given a delay state (0, 0 , l )  for the encoder, 
only four path states (O,O, O), (0, 1, O), (1, 0, O), and (1, 1,O) are allowed in next time interval. 

This leads to the concept of trellis structure. Since the encoder is essentially a finite-state machine, a 
finite-state diagram may be used to represent it. There are eight possible delay states of the encoder. At any 
given time, only one delay state (SO, S 1, or S2) represents the encoder. In the next instant, only four delay 
states are possible instead of eight. The particular path chosen at that time depends on the current path state 
of the encoder (hence, the name path state). The trellis diagram (Figure 4) concisely illustrates all possible 
transformations from one delay state to another, along with their corresponding path states. 



Figure 4. V.32 Modem Trellis Diagram 
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Viterbi Decoder 

The Viterbi algorithm is based on a soft-decision maximum-likelihood decoding technique. The main 
function of any decoder is to select the most likely output. A simple hard-decision decoder selects a code 
word that differs from the received sequence in the smallest number of positions. In other words, the code 
word is chosen that minimizes distance between the received signal and the code word. A soft-decision 
decoding scheme makes use of past history and reliability information to decode incoming data. A 
necessary ingredient of any soft-decision decoder is a suitable distance (or cost) function. 

A cost function may be unique to each modulation technique. Two widely used cost functions are the 
Hamming distance and the Euclidean distance functions [2]. The standard Viterbi algorithm does not 
specify any particular cost function. The Hamming distance function is suitable for binary signals. For PSK 
and QAM signals, the Euclidean distance function on their respective constellations is appropriate. For an 
added white gaussian noise (AWGN) channel, the farther the received signal from a point on the 
constellation, the less likely that it corresponds to that point. Therefore, the distance between the received 
signal (as it is mapped on the constellation) and a hypothesized output point on the constellation makes a 
good cost function for any QAM signal. Since V.32 uses QAM modulation, the distance estimate on its 
constellation is used as the cost function. 



Figure 5. Viterbi Decoding - Output Tracking and Cost Function 
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Figure 7 shows an expanded trellis diagram over several symbol time intervals with the x axis representing 
time and the y axis representing the eight possible delay states of the encoder. The encoder may attain only 
one delay state at any given time, but the decoder keeps track of all the possible states until it decides which 
one to select. This is the essence of soft-decision algorithms in which the actual decision is delayed until 
more information is available. Ideally, the maximum-likelihood method looks at the entire stream of input 
before making any decision about the output. Clearly, this approach is not feasible for real-time 
applications due to two factors: 
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The more practical approach taken by Viterbi is to consider only a finite length of input data before making 
a decision about the output. The decision-making process relies heavily on the cost function. 
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To understand this algorithm, consider the expanded trellis diagram as shown in Figure 7. At each time 
interval, there are eight possible delay states. Since the decoder must keep an "open mind" until it is time 



to select the most likely output, all eight states are considered as possible representations of the encoder 
in that time interval. A particular delay state can be approached only by four states from the previous time 
interval (see Figure 5). The decoder selects only one of these four states so as to establish a link between 
the previous time interval and the current one. Note that each link is identified by the path state it represents. 

Each path state consists of three bits of a 5-bit symbol. Therefore, one path state uniquely identifies a set 
of four constellation points. The V.32 signal space mapping is defined in such a way that each set of four 
points is symmetrically arranged and equally spaced on the constellation, as shown in Figure 6.  
Furthermore, each set of points is spaced as far apart as possible on the constellation. At the beginning of 
each sample interval, the decoder compares the received signal with each set and selects the point from each 
set that is closest to the signal. Essentially, this is a form of hard decoding, but its effect on the quality of 
the decoder performance is not significant. This is because each set of four points is widely spaced on the 
constellation so that any noise perturbation is less likely to affect these estimates. 

Figure 6. V.32 Modem - Signal Element Mapping 
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Eight constellation points are selected, and their respective distances from the received signal are 
computed. Each point corresponds to a different path state. Since each link in Figure 5 is identified by a 
path state, these computed distance values are associated with each link. 

By selecting all eight links, connections are established between the delay states at the current time and the 
previous time (see Figure 7). In this way, eight independent path traces are stored in memory. The cost 
function is now updated for each of these path traces. The cost function is the sum of distances associated 
with each link of a path trace. 
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Figure 7. Viterbi Decoding - Dynamic Programming 
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Of the eight path traces, the one that has minimum cost (or accumulated distance) is selected as the most 
likely path to receive the output. The selected path is traced back, and the 3-bit path state value (YO, Y1, 
Y2) that is associated with the last link stored in memory is the result of the Viterbi algorithm. Note that 
this 3-bit result does not uniquely identify a 5-bit output symbol. The four constellation points that 
correspond to the 3-bit result are compared with the input corresponding to that time interval, and the 5-bit 
value associated with the point that is closest to the input is the output of the decoder. Since the output of 
the decoder corresponds to the time period of the last link, it lags the input of the decoder by the length of 
the path history maintained by the decoder. It is experimentally determined that the optimal length of a 
Viterbi decoder is four or five times the constraint length of the convolutional encoder [I]. The V.32 
encoder has a constraint length of 3, and the decoder keeps a path history of the past 16 time intervals. 

Algorithm lmplementation on the TMS320CSx 
The three most useful features of TMS320C5x for the Viterbi algorithm are circular buffers, 
minimum-maximum instructions, and zero-overhead loops. Circular addressing is used extensively 
throughout the decoder algorithm to access the distance tables, stepping through the path and delay states, 
and tracing back the past path states to get output. Minimum-maximum value instructions are used in search 
algorithms to compute minimum Euclidean distance for each state and to find minimum accumulated 
distance at each time interval. Since the algorithm is based on a dynamic programming technique, it tends 
to have a multiple looped structure. The zero-overhead loops of TMS320C5x are frequently used by the 
decoder program. 

Encoder lmplementation 
The V.32 encoder block diagram is shown in Figure 2. As previously explained, it has two functional 
blocks: the differential encoder and the convolutional encoder. The encoder program flow is shown in 
Figure 8. 



Figure 8. V.32 Encoder Program Flow 
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The initialization routine INIT sets up auxiliary registers to point to input and output tables and resets the 
delay states (SO, S1, S2) to 0. This ensures that the initial state of the encoder is known beforehand. It is 
useful from the decoder point of view because the decoder initializes the cost of delay state 0 to 0 so that 
this state is always selected in the very first time interval. 

The encoder expects the input symbols to be stored in the table PCKD-IP with each element of the table 
containing aright-justified Cbit symbol. The table input method is employed because of its simplicity. For 
real-time applications, other techniques can easily replace the default method. If the input data is coming 
from an ADC, a simple approach is to create two buffers. One is read by the encoding algorithm, while the 
other is filled with incoming data by an interrupt service routine. In case the encoding process is required 
to be synchronous with incoming data, no data buffer is needed. At every symbol time, the input symbol 
is read from a peripheral device, and the resulting 5-bit output symbol is sent to another external device. 

The encoding algorithm operates on binary inputs. Therefore, each input symbol is unpacked into four 
words (which correspond to each bit) before any processing is done. The UNPACK section uses a 
zero-overhead block-repeat loop and PLU instructions to perform the unpacking operation. 

UNPACK : LACC LOCATE ; G e t  packed i n p u t  b i t s  

RPTB LOOP1 ;For  i=O; i<=3;++i  

SACL * ;Save t h e  word 

APL * - ;Keep LSB o n l y  

LOOP 1 : SFR ; S h i f t  r i g h t  t o  g e t  n e x t  b i t  

The DIFF function differentially encodes two input bits according to Equation (1) and Equation (2) on page 
83. Its output overwrites the original two input bits located in INPUT table. Next, the convolutional encoder 
processes these two bits and generates a redundant bit YO. The encoder state (SO, S1, S2) is stored in the 
STATMEM table, and it is updated each time a new redundant bit is generated. 



Finally, the resulting five output bits (OUTPUT + INPUT) are packed into a single word by the PACK 
function. This output word contains five right-justified bits (YO, Y1, Y2, 43 ,  Q4), and it is stored in the 
output buffer PCKD-OP in sequential order. Note that these five output bits could be sent to a DAC or a 
front-end modulator instead. 

Viterbi Decoder Implementation 
In contrast with the convolutional encoding algorithm, the Viterbi decoding algorithm is computationally 
more complex and numerically more intensive. In general, the execution time of the decoding algorithm 
is significantly greater than the execution time of the encoder algorithm. This section describes the 
algorithm in detail as it is implemented on the TMS320C5x. Although the code presented here is designed 
for the V.32 modem standard, it could easily be transformed for any other application of the Viterbi 
algorithm. 

Figure 9. Decoder Flowchart 
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The decoder program flowchart is shown in Figure 9. Each process block in the flowchart corresponds to 
an independent function. The modularity of each block is sacrificed somewhat to gain execution efficiency. 
In other words, each block is integrated, to a certain extent, with the block that precedes it. The results of 
a block are frequently passed in internal registers to the next block. However, all system variables are 
defined explicitly in the beginning, and the line-by-line comments in the source code help identify where 
the results are being stored. 

The initialization routine INIT is called to set up tables and variables. The ACCDIST table, which holds 
eight accumulated distance values for each delay state, is initialized by this function. As discussed in the 
Standard V32 Encoder section on page 82, the first state of the encoder is always (0,0,0) (that is, state 0). 
To ensure that the decoder always chooses state 0 in the first time interval, the initial accumulated cost of 
state 0 is set to 0 while the rest of the states are set to a cost of 0.5. 

The routine RD-DATA is called once every symbol interval to read new data. This is the only routine that 
needs to be rewritten to suit each application. The code presented here is not designed for any specific 
hardware. It assumes that some test data has already been stored in the TST-INP table before the decoder 
is invoked. The input is in the form of 5-bit symbols output by the encoder. Two look-up tables, XLOC and 
YLOC, convert each symbol to its equivalent real and imaginary axis values (also called XY or IQ values). 
The channel noise and distortion effects may be added to the I and Q channels independently. The resulting 
values are saved in variables CURR-X and CURR-Y for later use. This approach is taken so that test data 
and channel noise data may be computed independently of each other and stored in respective tables before 
the decoder is invoked. Obviously, this is not a real-time approach. The front-end demodulator can provide 
I and Q values directly to the device. In that case, RD-DATA is required to save only those values in 
CURR-X and CURR-Y locations. Each I and Q (or X and Y) input can have a maximum resolution of 
16-bits. 

Once the current input is located on the constellation by X and Y values, eight constellation points 
corresponding to the eight path states that are closest to this input point must be identified. Note that each 
path state corresponds to four unique constellation points (see Figure 6). The brute force method of 
determining these constellation points is to consider each group of four points individually, compute the 
distance from each point to the input, and select the closest one. This requires all 32 points that compose 
the V.32 constellation to be considered for each input symbol. Another way to make the selection is to use 
a look-up table. Since the locations of the constellation points are known beforehand, it is simpler to 
identify the region where the input lies and use a table to determine the eight points that are closest to that 
region. As shown in quadrant I in Figure l(b), there are 13 distinct regions in each quadrant of the 
constellation. Each region has a unique set of eight constellation points (corresponding to eight path states). 
A table called REGION is set up in data memory that contains 13 macro elements, each element having 
four subelements corresponding to four quadrants of the constellation. Each subelement is a set of eight 
pointers to the closest constellation points. 



To identify the region where the current input lies, the following decision algorithm is used, where X,Y 
is the location of the current input on the constellation shown in Figure l(b). 

If 1x1 <= 1 Then 
If I Y I  <= 1 Then 

Region#l 
Else 

If IYI<= 2 Then 
Region#4 

Else 
Region#6 

Else 
If 1x1 <= 2 Then 

If I Y I  <=1 Then 
Region#2 

Else 
If I Y ~  <=2 Then 

Region#5 
Else 

If / Y I  <= IxI+~ Then 
Region#lO 

Else 
Region#8 

Else 
If ~ Y I  <= 1 Then 

Region#3 
Else 

If I Y I  z I x I + ~  Then 
Region#13 

Else 
If I Y I  <= 1x1-1 Then 

If (Y( <= 2 Then 
Region#7 

Else 
Region#12 

Else 
If I Y I  <= 2 Then 

Region#l 1 
Else 

Region#9 

After identifying a region, a quadrant is selected according to the polarities of X and Y. 

Refer to the GET-RGN function of the decoder source code for implementation details. Note the use of 
delayed conditional branches and the XC instruction to avoid flushing the pipeline. The result of the 
GET-RGN function is a pointer to the REGION table. 

The current cost of each path state is defined as the distance from the current input to the respective 
constellation point. The result of the GET-RGN function points to a set of eight constellation points. If 
(X,Y) is the input for a given time interval, and (Xk,Yk) are eight constellation points that correspond to 
state k (where k = 0...7), then the current distance table is defined as: 

DIST [kJ = (Xk-x)' + ( Y ~ - Y ) ~  ; k = 0...7 (3) 



The square root operation is not performed because it is time-consuming. Although the square root function 
is not linear, distance values without the square root operation work well because the relationship between 
x and sqrt(x) is one-to-one and monotonic. The GET-CUR-DIST routine performs this computation for 
each path state. 

STATE0 : 
LAR 
MAR 
LACC 
SUB 
SACL 
SQRA 
ADRK 
LACC 
SUB 
SACL 
LACL 
SQRA 
LTA 
SACH 
MPY 
SPH 

AR2,*+,AR2 
*o+ 
* 
CURR-X 
DIFF-X 
DIFF-X 
#3 2 
*,o,ARo 
CURR-Y 
DIFF-Y 
#O 
DIFF-Y 
SMALL 
DIST, 4 
DIST 
DIST 

;Get address of 1st point out of 8 
;Add XLOC, AR2 points inside XLOC 
;Get x value of 1st point 
;Subtract current x value 
;Save (Xc-Xi) 
;P=(Xc-Xi) ^2 
;Now AR2 points inside YLOC 
;Get Y value of 1st point 
;Subtract current y value 
;Save (Yc-Yi) 

;P=(Yc-Yi) ^2, ACC=(Xc-Xi) -2 
;ACC=(Xc-Xi) ^2+(Yc-Yi) ^2 
;Save acc. distance*2*4 

;Save distance*O.l in 1st location 

The distance or cost values are stored in an 8-word DIST table. Each element of the DIST table corresponds 
to a path state. The order of storage in the table shown in Figure 12 is not a simple ascending or descending 
form. The reason for this scrambled order is explained later. 

Figure 10. Delay State Linking 
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The next step is to accumulate the cost (or distance) for each delay state at the current time. As previously 
explained, at every time interval there are eight delay states (SO, S 1, S2). Each delay state at the current 
time interval is linked to four delay states from the previous time interval, as shown in Figure 10. The 
minimum cost link is identified, and the distance value of the selected link is added to the accumulated cost 
of the delay state from which it originates. This gives the accumulated cost of the current delay state. 

In addition to the accumulated cost, the following information needs to be stored for each delay state: 
The path state that identifies the link selected 
The delay state of the previous time interval that is linked to the current delay state 



The code to perform these functions is: 

STATE 0 : 
RPTB 
LACC 
ADD 
CRLT 
NOP 
XC 
SAR 
SAR 
MAR 
MAR 
MAR 

ENDBO : 

;For (i=O;i<=3;++i) 
;Get prev. accumulated distance 
;Add current distance 
;If acc < prev. largest 
;Then 
;Update PAST-DLY & PAST-PTH locations 
;Pointer to ACCDIST -> PAST-DLY 
;Pointer to DIST -> PAST-PTH 
;ARP = AR1 
;ARl++ (circular addressing) 
;AR2++ (circular addressing) 

Pointers to the past path and delay states are stored in the PAST-PTH and the PAST-DLY tables. Since 
the decoder bases its decision on the path history of the previous 15 time periods, these two tables span 16 
time periods (including the current time period). The length of each table is 128 words (16 time periods 
x 8 states). At each time interval, the GET-ACC-DIST routine adds new information to the tables and 
discards the oldest eight states. The format of these tables is shown below. 

Figure 11. 128-Word Circular Buffers - Format of 
PAST-PATH and PAST-DLY Tables 
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state 0 
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state 1 
state 2 
state 3 
state 4 
state 5 
state 6 
state 7 

state 0 
state 1 
state 2 
state 3 
state 4 
state 5 
state 6 
state 7 

state 0 
state 1 
state 2 
state 3 
state 4 
state 5 
state 6 
state 7 

Both tables are set up as 128-word circular buffers. Each of them is divided into 16 macro elements 
corresponding to 16 time intervals. Each macro element stores the state history of one time interval. A 
pointer is set up to indicate the location of the current time interval. By stepping through each macro 
element, a path can be traced backward in time. 

Consider the V.32 trellis diagram again (see Figure 4). Notice that all even-numbered delay states of the 
current time interval have links to the first four delay states of the previous time interval. Similarly, all 
odd-numbered new delay states have links to the last four delay states. For instance, the new delay state 
0 can be reached from the past delay states 0 - 3, and the new delay state 1 can be reached from the past 
delay states 4 - 7. So it is relatively simple to process even- and odd-numbered states in two groups. 
Furthermore, even-numbered delay states can be reached only by the first four path states, and 
odd-numbered delay states can be reached only by the last four path states. 



Figure 12. DIST Table Structure 
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If the elements of the DIST table are set up as shown in Figure 12, all the path-state sequences can be 
generated from the same table. Four-word circular buffers are set up, comprising upper and lower halves 
of the DIST and ACC-DIST tables. By incrementing or decrementing through these circular buffers, path 
and delay-state sequences can be generated for each new delay state. (See the GET-ACC-DIST routine 
in the source code.) For each new delay state, only four past delay states and path states need to be accessed. 
The table for past delay states (ACC-DIST) is set up as a circular buffer so that after accessing four 
elements of the table, the pointer is automatically reset to the first element for the next iteration. 

Once least-cost links to the eight delay states are identified and stored in appropriate tables by the 
MIN-ACC-DIST routine, the accumulated distance table ACC-DIST is updated with new accumulated 
distances. To avoid overflow, new accumulated distance is computed according to the following equation: 

new acc dist = 0.9 X old acc dist + 0.1 X dist (4) 

Note that this is a simple IIR implementation of a low-pass filter. The coefficients of Equation (4) can be 
modified to control the decay time of this low-pass filter. 

There are eight independent tracks whose path histories are maintained in the PAST-PTH and PAST-DLY 
tables. The track that has the least accumulated cost (or distance) at this point is traced back for 16 time 
periods to determine the decoder output at that time. This task is performed by the GET-PATH routine as 
shown below. After 15 iterations, the delay state that corresponds to oldest link of the track is found. 

RPTB 
MAR 
LACC 
SUB 
SAMM 
SBRK 
SBRK 

TLOOP : 

TLOOP-1 ;for i=O1i<=15,i++ 
* O+ ;offset by state for prev. time period 
* 0- ;get next pointer & reset ARO to state 0 
#ACCDIST ;subtract #ACCDIST to get next state 
INDX ;save next state 
7 ;move ARO 7 locs back to avoid skipping CBERl 
1 ;now ARO is correctly positioned 1 time period 

;back (circular addressing) 

The format of the PAST-PTH table is identical to the PAST-DLY table except that it contains previous path 
states instead of previous delay states. Also, the two tables are contiguous in data memory. Hence, by 
adding 128 to the pointer of the PAST-DLY table, corresponding path states can be accessed in the 
PAST-PTH table. The 3-bit path state (YO, Y 1, Y2) that corresponds to the oldest link is the output of the 
decoder. Since the path-state table DIST is not in a simple order, a short table look-up routine performs the 
descrambling of the output. 

The 3-bit path state output by the Viterbi algorithm identifies a set of four points on the V.32 constellation. 
Of these four points, the one that is closest to the actual input (at that time period) should be selected. A 



table must be set up in memory that stores the decoder input for the last 16 time periods so that the oldest 
input can be compared with these four constellation points. Fortunately, this cycle-consuming function can 
be avoided entirely by recalling that this comparison operation was done earlier (16 time periods back, to 
be exact) using the REGION table. If the pointer to the REGION table that identifies the eight closest 
constellation points (for each one of the path states) is available for that time interval, it is a simple matter 
to select a constellation point according to the path state number 0-7. 

A 16-word circular table PATH-TBL is set up that stores pointers to the REGION table for the last 16 time 
periods. Since this table is always accessed sequentially (as opposed to randomly), the bit-reversed 
addressing mode is used to implement this circular buffer. The resulting 5-bit symbol (YO, Y 1, Y2,Q3, Q4) 
is the actual output. Obviously, YO, the redundant bit, does not contain useful information (as it has already 
served its purpose) and can be discarded now. 

Finally, the differential decoding algorithm ( D I P  routine) converts Y1 and Y2 to Q1 and Q2. The 
following equations describe this decoding process: 

A table look-up approach is taken here to decrease the execution time of this routine. A 16-word table 
DIFF-TBL is set up in memory. Each element of this table corresponds to a unique combination of bits 
[Y 1,- 1 Y2,- 1 Y 1, Y2,], and it contains resulting decoded bits QlnQ2,. Refer to the source code listing; 
see the Code Availability section on page 100. These two bits combined with 43, and 44, result in a 4-bit 
output symbol (Ql,  Q2,Q3,Q4). 

Performance Analysis 

The V.32 encoderldecoder performance is evaluated on the TMS320C5x Software Development System 
(SWDS)~. The code benchmarks are also computed with the help of TMS320C5x SWDS. The transmission 
channel characteristics are simulated using the MATLAB software. 

The input to the V.32 encoder is a binary data stream. As previously discussed, the stream is divided into 
4-bit contiguous blocks called symbols. From the encoder standpoint, the input data is random, but the 
resulting 5-bit output symbols are not entirely random. Due to the convolutional encoding done on two bits 
of each 4-bit input symbol, output symbols are restricted within a subset of 32 symbols, depending on past 
symbol history. 

The QAM modulator modifies the amplitude and the phase angle of the transmitted carrier signal according 
to each 5-bit symbol it receives. The communication channel imperfections distort the transmitted signal. 
White noise, impulse noise, and phase reversals are the most commonly encountered sources of channel 
distortion in telephony. 

2 Since the writing of this paper, the 'C5x SWDS has been replaced with the 'C5x evaluation module (EVM) for code 
development. 
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The information is carried by the amplitudelphase of the transmitted carrier or, equivalently, by the I and 
Q components of it. 

S(t) = amplitude X cos (wt + phase) 
= I X cos (wt) + Q X sin (wt) 

The I and Q components of the signal received by a V.32 modem are corrupted with channel noise. If the 
channel is modeled as an AWGN-type channel, it is simple to simulate its effect on the signal by adding 
controlled Gaussian noise to the I and Q components independently. If N(t) is the zero-mean white noise 
signal, the signal-to-noise ratio (SNR) of QAM modulated signal S(t) is given by 

variance of S(t) 
SNR (dB) = 10 x log,, Lvariance of N(t) I 

With the assumption that the I and Q inputs are statistically independent of each other, the SNR equation 
for the QAM modulated signal can be simplified as 

variance of I 
SNR (dB) = 10 x log,, rvariance of N ,  I 

- variance of Q - lo log'o [variance of N* I 

where Ni and Nq are additive noise signals for the I and Q input signals, respectively. Fixed-length 
sequences of I and Q are generated, and their sample variances are computed using the MATLAB software. 
For each desired value of SNR, required variances of Ni and Nq are calculated using Equations (9) through 
(12). Once the variances of Ni and Nq are determined, zero-mean Gaussian noise sequences Ni and Nq are 
generated by MATLAB. The input to the decoder program consists of I and Q data added to the respective 
noise sequences, Ni and Nq. This allows measuring the SNR performance of the decoder. 

Figure 13 illustrates the performance of V.32 encoderldecoder code for various SNRs. These results are 
based on an input data sequence length of 4000 symbols. The yardstick for the performance measurement 
is symbol error rate (SER), which is defined as: 

total number of symbol errors 
SER = 

total number of input symbols received 

Note that each input symbol consists of four bits. 



Figure 13. White-Noise Impairment - Simulation Results 
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There are several factors that affect the performance of a Viterbi decoder in the presence of noise. One is 
the length of the path history analyzed by the decoder before selecting the most likely output. In general, 
it should be four or five times the encoder constraint length. Further increase in path history length gives 
only marginal improvement in performance. 

Another performance factor is the decay time of the low-pass filter that is used to accumulate distance. By 
decreasing its time constant, the decoder can be made to respond to short noise bursts in the channel. 

The table of eight accumulated distance values provides a convenient way of monitoring the performance 
of the decoder (and noise activity in the channel) in the absence of any prior knowledge of incoming data. 
Recall that these eight accumulated distance values allow the selection of minimum cost path at every 
symbol time interval. These values are also updated as new data is processed. During the relatively 
noise-free periods of transmission, it is observed that only one of the eight distance values remains 
significantly smaller than the rest. This in turn forces the decoder to select one particular path at every time 
interval. As the signal deteriorates, the difference between the minimum value and the rest of the table 
contents decreases. At some point, all distance values become so much alike that the decoder can no longer 
identify the correct path. This is the stage in which the BER increases considerably. 



Table 1. Program Benchmarks 

Speed And Memory Requirements 

CPU Loading 
per Symbol, 
Excluding 

Code Size Data Size Initialization 
(in Words) (in Words) (in Machine Cycles) 

V. 32 
Encoder 

V. 32 
Decoder 

Table 1 shows the code size, data size, and CPU loading of the V.32 encoderldecoder program. This is by 
no means a fully optimized implementation of V.32 on the TMS320C5x. This code is written with the basic 
aims of demonstrating the capabilities of the TMS320C5x digital signal processor family and providing 
system designers with a head start on V.32 modem design. Table 2 and Table 3 present memory and speed 
requirements for various modules of the encoder and decoder. There are several speed-vs.-memory issues 
that can best be resolved by the system designer. The following paragraphs highlight some of them. 

Table 2. V.32 Encoder Code 

No Function Name Code Words Machine Cycles 

1 START 

2 UNPACK 

3 DlFF 

4 ENCODE 

5 PACK 

Table 3. V.32 Decoder Code 

No Function Name Code Words Machine Cycles 

1 RD-DATA 17 22 

2 GET-RGN 108 80 - 112 

3 GET-CUR-DIST 136 142 

4 GET-ACC-DIST 228 489 

5 MIN-ACC-DIST 36 65 

6 GET-PATH 12 132 

7 G ET-SY M 11 15 

8 DlFF 2 1 24 



The approach that should be taken wherever speed-vs.-memory tradeoffs exist is to optimize for speed. For 
instance, the GET-RGN function uses a 416-word table to identify the eight closest constellation points. 
As discussed in the Algorithm Implementation on the TMS320C5x section on page 88, an alternate 
approach is to compute the distance between each constellation point and the current input and select the 
minimum distance point. 

In the GET-CUR-DIST routine, distances corresponding to eight path states are computed by inline code, 
as opposed to looped code. This is done to facilitate the scrambled order of storage in the DIST table (see 
Figure 12). A considerable amount of program space may be released (approximately 100 words) if looped 
code is used here at the cost of additional machine cycles required to set up the loop and to access the DIST 
table. 

In contrast with the GET-CUR-DIST routine, the GET-ACC-DIST routine is very difficult to implement 
in loop form. Each delay state computation itself makes use of iterative code. Furthermore, path-state 
sequences are unique for each delay state. 

Summary 

The TMS320C5x provides a powerful DSP engine for data-communication applications. This application 
report presents an efficient implementation of data encoding and decoding algorithms for V.32 modems 
on the TMS320C5x. 

The encoder and decoder source code is designed with a generic hardware interface in mind. System 
designers can modify the inputloutput modules to suit their hardware requirements. The encoder algorithm 
is fairly straightforward. Most of the number crunching is required by the decoder algorithm. Although the 
code is written for the V.32 modem standard, a conscious effort is made to point out the V.32-specific and 
general-purpose Viterbi functions for adaptation of the code to any other Viterbi decoding scheme. For the 
same reason, the program flow is discussed in considerable detail. 

Assembly code can be run on TMS320C5011 in real time, without requiring any external memory. On a 
35-11s TMS320C5x, the entire code only takes approximately 8% of the CPU time. 

Code Availability 

The associated program files are available from Texas Instruments TMS320 Bulletin Board System (BBS) 
at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com. 
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Abstract 

This report presents an enhanced forward error-correction scheme that complies with the U.S. Digital 
Cellular (USDC) standard. The proposed scheme uses a generalized Viterbi algorithm (GVA) based on N. 
Seshadri and C-E. W. Sundberg's, "Generalized Viterbi Algorithm for Error Detection with Convolutional 
Codes" [ l ]  that produces an ordered list of N globally best estimates of the transmitted sequence. The 
scheme uses the GVA to enhance performance of the USDC voice channel decoder and is implemented on 
the TMS320C53 fixed-point digital signal processor (DSP). This paper shows that the 'C53 
implementation of the algorithm does not require significant increase in computational overhead when 
compared to a standard Viterbi algorithm. 

Introduction 

The second-generation U.S. cellular radio telephone system (IS-54 standard) is based on digital 
technology. To increase system capacity and improve speech quality, the voice channels use digital 
transmission for both forward and reverse radio links. Each radio channel is shared by at least three mobile 
units through a time-division multiple access (TDMA) scheme. Elaborate forward error-correction (FEC) 
techniques are employed to operate these radio links reliably under low carrier-to-interference (CD) ratio 
and high data-transfer rate. The IS-54 standard combats channel noise by using systematic cyclic 
redundancy check (CRC) codes, convolutional encoding, and frame interleaving techniques on transmitted 
data. Although the standard does not recommend any particular decoding algorithm, the Viterbi algorithm 
(VA) is most commonly used by system designers. 

Various generalizations of the original Viterbi algorithm have been presented in the literature [ I ,  2,5,6].  
These schemes provide enhanced performance over the conventional Viterbi algorithms for a number of 
applications, including automatic repeat request (ARQ) schemes, concatenated codes, coded Viterbi 
equalization, etc. One scheme [2] modifies the VA to deliver a reliability value for each bit in the most likely 
path sequence. This algorithm is useful for Viterbi equalization on IS-54 radio channels, leading to an 
improved performance of the outer VA performing the FEC. Another scheme [I ]  generalizes the VA to find 
N globally best estimates of the transmitted sequence. It is shown here that this algorithm is particularly 
appropriate for the rate- 112 framed convolutional encoder used by the IS-54 voice channel. This GVA is 
implemented on the TMS320C53 fixed-point DSP. 

Algorithm Description 

It is well known that bit errors usually occur in bursts in Viterbi decoders. If you know the globally second 
best path, the third, etc., you can use this information to reduce the burst error rate under noisy conditions. 
To select N best paths simultaneously, N best survivors (out of 2N for a rate-llm code) at each state must 
be retained during the forward pass through the trellis. This is referred to as parallel GVA in [I]. However, 
for this application, only one path is estimated at a time. If requested, the serial GVA [ l ]  produces the nth 
best path on the basis of the previous n-l best paths. 

The serial GVA algorithm, as shown in Figure 1, is selected for the voice channel FEC because it results 
in reduced memory requirement and less computational overhead, as discussed in the next section. 

The IS-54 voice channel uses a concatenated coding scheme in which each message frame is divided into 
two bit classes: class I and 11. For the twelve perceptually most important bits of class I, a 19-bit systematic 
CRC code is generated. These bits, along with the rest of the class I bits. form input to a rate-112 framed 
convolutional encoder with a constraint length of 5. The class I1 bits remain uncoded. 



The frame size of the encoder is 89 bits, including five tail bits. The encoder always starts and ends in state 
0. The serial GVA decoder maintains a state path history as it expands the trellis in the forward pass. It also 
sets up two accumulated metric tables, accuml and accum2, for the two globally best paths. Since the trellis 
expands from initial state 0, the first element of the accum 1 table is initialized to 0, and the rest of the table 
is set to a large positive number for a distance-type metric (or a large negative number for a correlation-type 
metric). Similarly, the second table, accum2, is also initialized to a large positive number, except for the 
first element, which, in this case, is initialized with a positive integer N. 

Figure 1. IS-54 Voice-Channel GVA Algorithm 
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The first pass of the algorithm produces the globally best estimate of the transmitted sequence. The 
algorithm, in this case, is identical to a conventional VA, with one exception: it updates the state count array 
as it traces the best path back in time. This state count array is used for any subsequent invocations of the 
GVA. Each element hij of the state count array uniquely represents state i in time interval j and indicates 
how many of the previously identified n-1 best paths pass through state i in time j. When the GVA is 
invoked for the first time, the state count array is initialized to 0. During trace-back of the best path, 
corresponding elements of the array are incremented by 1. 

To find the second best path, the trellis is expanded again; however, this time, the second best path (out of 
four possible survivors) that enters state i in time j whose hij != 0 is retained. For the states whose 
corresponding hijs are 0 (that is, states that are not included in the globally best path), the best survivor is 
retained. Note that, in this case, no processing is required because the state path table already contains the 
history of the best path. During the trace-back phase for the second best path, elements of the state count 
array that corresponds to the path are incremented by 1. This procedure is repeated for n best paths. 

1=1+1 

For the rate-112 voice channel coding, two survivors normally leave and enter state i at any given instant. 
The better of the two paths entering state i is retained for further expansion. However, for the second best 
path estimation, four links are considered. Two links each from state i and state i+16 in time j -1 enter state 
i in time j. Two links are retained for further expansion. The accumulated metric tables, accuml and 
accum2, represent the two survivors for state i. The difference between the initial state 0 metrics of the two 
best paths (that is, accum2 - accuml = N) serves to maintain an initial offset between the two most 
likely paths. This allows the two paths to possibly diverge later in time. The actual value of N is 
system-dependent and can be determined experimentally. 

/" 
\ 



The knowledge of the second best path, the third, etc., is utilized by the voice channel decoder in this way: 
if the CRC syndrome is nonzero for the best path, the decoder output contains errors. In this case, the second 
best estimate of the transmitted data is considered. If the CRC check is successful on this estimated 
sequence, then it is selected as the decoder output. Otherwise, the next best path is considered. This 
procedure is repeated either until an estimated sequence with zero syndrome is found or until the L best 
candidates fail. In case of failure, the current speech frame is marked bad, and a frame-masking procedure 
is initiated as specified by the IS-54 standard. 

Implementation Details 

Programmable DSPs are widely used in digital cellular mobile unit and base station designs. The 
high-performance TMS320C5x is especially designed for digital cellular applications. The newest member 
of this generation, the TMS320C53, provides a low-cost, low-power DSP engine with more than 20K 
words of on-chip memory. Its 35-11s fast instruction cycle time, large on-chip memory, and programmable 
power-down modes make it especially suitable for hand-held telephone designs. 

The GVA is implemented on a TMS320C53. The 'C53 minimax instructions facilitate a search algorithm 
for trellis expansion. Its dynamic bit testing and zero-overhead loops efficiently implement a trace-back 
routine. 

The serial GVA algorithm is chosen for two primary reasons: 

The relatively insignificant increase in computational overhead when compared to a 
conventional VA 
Less memory usage compared to other types of GVAs 

The first pass of the GVA algorithm (that is, search for the best path) is identical to a conventional VA. The 
only additional overhead is the update of the state count array during the trace-back stage. The second pass 
of the GVA (if required) is more complicated. In this case, two out of four possible survivors are selected. 
This normally requires a binary search of the accuml and accum2 tables (for a total of five comparisons). 
However, when an ordered list of accumulated metric tables is maintained, only two comparisons are 
required. Moreover, comparison is required only for the trellis points for which hij is nonzero, as previously 
discussed. Table 1 summarizes the result of a TMS320C53 implementation of conventional VA and serial 
GVA algorithms. Although the serial GVA takes longer to find the second best path, it is required to do so 
only if the CRC syndrome fails on the best path. Therefore, the computational requirement of the serial 
GVA averages out over varying channel conditions. 

Table 1. Algorithm Execution Time on a 35-ns TMS320C53 

Trellis Expansion 1.15 ms 1.15 ms 3.1 ms 

Conventional VA 

The other advantage of this algorithm is its conservative memory requirement. The two main system design 
constraints of a portable dual-mode phone are small form factor and low power consumption. Both 
preclude a design from having a large amount of expensive static RAMS. Since the algorithm serially finds 
the globally best estimates, there is no need to save path histories of the previously found paths. Therefore, 
one state path history buffer suffices for this application. Table 2 compares the memory requirement of a 

Serial GVA 

Best Path Second Best Path 



serial GVA that finds two best paths with the memory requirement of a conventional VA. Both algorithms 
are implemented on a TMS320C53 processor. 

Table 2. Memory Requirement 

Conventional V A ~  G V A ~  

State Path History 

State Count 

Accumulated Metric 

t Number of 16-bit words required * For best and second best paths 

Results 

The performance of the GVA in comparison with the conventional VA is shown in Figure 2. The modulation 
scheme used is phase-shift keying (PSK). The results are measured over a simulated additive white 
Gaussian noise (AWGN) channel. Figure 3 shows the path history of the voice channel encoder for a sample 
input sequence. It also shows the best estimated path and the second best path traces. Note how the second 
best path diverges from the best path briefly and remerges with it subsequently. If the best path diverges 
only once from the actual encoder path, it is likely that the second best path will match the encoder path. 

Figure 2. Simulated Bit Error Rate of Serial GVA Versus VA 
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Figure 3. State Path History Trace 
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Conclusions 

In general, modified Viterbi algorithms offer improved performance of a forward error-correction design 
at the expense of more computational overhead and added complexity. This paper presents an FEC 
subsystem for a USDC voice channel that uses a generalized Viterbi algorithm [I] to combat bit errors 
under noisy channel conditions. It shows that the proposed FEC design performs better than a standard 
Viterbi-based design. Furthermore, the FEC design does not require significant increase in memory space 
and processing power. The algorithm is implemented on a digital signal processor, the TMS320C53. The 
experimental results indicate that even when the proposed algorithm is restricted to two best estimates of 
the transmitted sequence (that is, L = 2), its bit error rate is less than that of a standard Viterbi algorithm 
operating under similar channel conditions. Further performance improvement is achievable if more than 
two estimated sequences are generated. 
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Introduction 
Digital cellular and digital mobile radio communication are today's key topics in the communications field. 
Digital mobile cellular communication systems are being introduced in the U.S., Canada, Europe, Japan, 
and many other countries. Various standards like the U.S. Digital Cellular (USDC), Global System for 
Mobile Communications (GSM), and Personal Digital Cellular (PDC) have been proposed in different 
countries for the development of a mobile cellular communication system. The U.S. Digital Cellular 
standard is specified by the Telecommunications Industry Association (TIA). The TIA has specified 
n/4-DQPSK as the new modulation standard for the emerging U.S. digital cellularcommunication systems. 
The focus of this report is on the theory and implementation of the nl4-DQPSK modem on the TMS320C5x 
DSP. The TMS320 family of DSPs is well suited for such modem applications. The advanced features of 
the 'C5x have made the high-data-rate modem implementation possible. This report is organized into the 
following topics. 

Description of n/4-QPSK modulation scheme 
Theory of the n/4-DQPSK modem 
Modem implementation on the TMS320C5x 
Performance results 
Summary 

The key features of the TMS320C5x that provide excellent code efficiency and ease of implementation are 
discussed in the Modem Implementation on the TMS320C5x section on page 119. 

Description of d4-QPSK Modulation Scheme 
A study of various modulation schemes like QPSK, OQPSK, GMSK, and TFM have been made, and 
attention has been focused on the use of linear modulation techniques for nonlinearly amplified systems 
to meet both the power and spectral efficiency requirements of mobile cellular systems. There has been a 
search for alternative unstaggered linear modulation systems that have low envelope fluctuation. After a 
thorough analysis, 1114-QPSK was proposed as the standard modulation technique to be used in the digital 
cellular environment. nI4-QPSK is an unstaggered modified version of QPSK with two sets of 
constellations totaling eight constellation points. This modification to QPSK has carrier phase transitions 
that are restricted to t x/4 and f 3x14. Since the phase does not undergo instantaneous t n transitions as 
in QPSK, the envelope fluctuation at the output is significantly reduced. Also, as this is not a 
staggeredloffset scheme, coherent as well as noncoherent detection can be applied to n/4-QPSK. It has been 
shown that the spectral efficiency obtained is twice that obtained by two-level digital FM, GMSK, or TFM, 
which are constant envelope modulation techniques. 

The ~14-shifted-QPSK signal constellation can be viewed as the superposition of two QPSK signal 
constellations offset by 45" relative to each other, resulting in eight signal phases. Symbol phases are 
alternately selected from one of the two QPSK constellations, and as a result, successive symbols have a 
relative phase difference that is one of the four angles, - t d 4  and 2 3 ~ 1 4 .  Figure 1 illustrates the 
n/4-shifted-QPSK signal constellation and the various possible phase transitions. As Figure 1 shows, two 
constellation sets, one with four possible phases (0, n12, n, and h / 2 )  and the other with another four 
possible phases (n/4,3~/4, -3n14, and h14 )  are used in the actual modulation. There is a relative n14 shift 
between the two constellation sets; hence, the name ~14-shifted QPSK. 



First, the input data is buffered into one of the four possible dibit symbols (namely, 00,Ol. 10, or 11). Then. 
for odd numbered symbols, the output signal phase is chosen from one of four possible phases of the 
constellation set $; for even numbered symbols, the output signal phase is chosen from one of four possible 
phases of the constellation set 8. The choice of the particular phase within a constellation set depends on 
the dibit input. As usual, to reduce dibit errors in the receiver, Gray coding of dibits is done prior to phase 
selection from a chosen constellation set. This alternate selection of a constellation set can be reversed for 
odd and even numbered symbols. In conventional QPSK, only one of the constellation sets is chosen. Due 
to the change of constellation sets in xl4-shifted QPSK, eight signal constellation points are possible. 
Although eight constellation points are seen in the constellation diagram and they look like the 8-PSK 
signal constellation, the choice of signal phases for every symbol is only four; hence, it is still a 4-phase 
QPSK. In conventional QPSK, the possible phase transitions were 0, f ~ 1 2 ,  and x. Here, the possible phase 
transitions are only f 7c14 and f 3x14, thereby reducing the envelope fluctuations of the modulated output 
signal. Envelope fluctuations are very important since demodulation becomes difficult when the signal is 
amplified by nonlinear amplifiers (which are common in cellular systems). An OQPSK (offset QPSK) 
scheme reduces the fluctuations but restricts the type of demodulation scheme to be coherent. Noncoherent 
demodulation has certain advantages in the cellular systems, and x14-shifted QPSK allows the flexibility 
to use either coherent or noncoherent demodulation. If differential encoding is also performed prior to 
signal mapping, the scheme becomes x14 DQPSK. 

Figure 1. d4-Shifted QPSK Signal Constellation 

Q rail 



Theory of the d4-DQPSK Modem 

Basic Modem Specifications 

The specifications for the U.S. digital cellular modem were set by the TIA. A few of the specifications that 
are relevant to this application are: 

Mode of operation 
- 30-kHz channel structure, each channel operating on TDMA burst mode 
- Gross bit rate of 48.6 kbps 
Modulation 
- ~114-shifted differentially encoded quadrature phase shift keying 
- Gray coding used in signal mapping to reduce dibit errors 
- Spectral shaping to limit adjacent channel interference 
- No specific implementation method 
Baseband filtering 
- Square-root raised-cosine pulse-shape frequency response 
- Linear phase response 
- Roll-off factor for square-root pulse shaping filter to be 0.35 
- No specific implementation method 
Demodulation 
- Any coherent or noncoherent demodulation method 
- No carrier-related specifications (TMS320C5x implementation is a baseband modulation 

and demodulation) 

Modulator 

The theory behind signal mapping and baseband filtering for modulation is reproduced from the TIA 
document [7] here. The block diagram of the ~14-shifted DQPSK modulator is shown in Figure 2. The input 
48.6-kbps data stream is converted into symbols as dibits Ak (odd bit) and Bk (even bit). Then the 
information is differentially encoded (symbols are transmitted as changes in phase between two successive 
symbols rather than as absolute phases) and mapped into one of the signal phases from either of the two 
signal constellations described in the Description of W4-QPSK Modulation Scheme section on page 113. 
The symbols can be first differentially encoded and then mapped into a signal phase as a two-step process, 
or they can be combined into a single step with a set of equations. The digital data sequences Ak and Bk 
are encoded as Ik and Qk according to the following set of equations. 

Ik-l and Qk-l are the previous symbol's I and Q values. A$(Ak, Bk) is the phase change in the kth symbol 
interval and is determined according to Table 1. The phase change values are Gray coded. 

Table 1. Phase Calculation 



Simple trigonometric manipulation easily shows that Equations (1) and ( 2 )  are derived from 

where Qk and $k-l are the absolute phase angles corresponding to the kth and (k-1)th symbol intervals, 
respectively. 

The signals Ik, Qk at the output of the differential phase encoding block can take one of the five values 0, 

2 1, or * 4, as seen from the constellation of Figure 1. Impulses Ik, Qkare applied to the I and Q baseband 
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pulse-shaping filters. The baseband filters have linear phase and square-root raised-cosine frequency 
response of the form: 

where T is the symbol period. The roll-off factor, a, determines the width of the transition band and is 0.35 
as per the specifications. 

Figure 2. Modulator Block Diagram 

The baseband-filtered I and Q signals are then multiplied by the camer and transmitted over the channel. 
The implementation on the TMS320C5x is a baseband modem, hence; the carrier is not included as part 
of the modulator block diagram. 

Demodulator 
Digital communication systems that operate in power- and bandwidth-limited channels generally employ 
coherent detection that involves carrier-recovery technique. In a Rayleigh-faded mobile channel with 
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AWGN, coherent systems have a significant advantage in power efficiency and performance over the 
noncoherent demodulation involving differential or delay detection techniques. But in a mobile 
environment, disturbances such as multipath fading, Doppler frequency shifts, and phase noise are present. 
Coherent detection, which is based on the carrier frequency and phase lock, may suffer disadvantages over 
the noncoherent detection, though coherent detection has 3-dB power efficiency. Additionally, the 
noncoherent detection makes the receiver design simpler. 

Since the current implementation on the 'C5x is a baseband modem that does not involve the carrier, and 
since noncoherent demodulation offers significent advantages, baseband differential detection has been 
chosen as the implementation technique on the 'C5x. Note that the TIA has not recommended any specific 
demodulation method. 

Figure 3. Demodulator Block Diagram 

I Matched I 
! a u -  I Filter I . 

Differential 
Detection 

Q Matched 

Zt 
Filter 

Recovered 
Recovery 

Symbol 
Timing 

The block diagram of the demodulator is shown in Figure 3. The theory of baseband differential detection 
[5] is discussed in the following sections. 

Since no carrier multiplication is performed in this 'C5x implementation, the signals wt and zt are directly 
available at the demodulator without any cosine/sine multiplication. At this time, wt and zt are sampled, 
and the filtering, differential detection, data recovery, and symbol timing operations are performed. In this 
implementation, the samples wk and zk are made directly available to the demodulator in order to test the 
modem in the loop-back mode. 

Filtering 
The samples of wt and zt are passed through the matched filters in the receiver. Since the baseband I and 
Q signals at the transmitter are filtered by square-root raised-cosine pulse-shaping filters, the matched 
filters at the front end of the receiver are designed to give the same frequency response so that the combined 
receiverltransmitter response becomes raised cosine. 

Differential Detection 
Differential detection (delay and multiply) is performed with the filtered samples wk and zk according to 
the following equations. 

wk = cos(qk - 0) and zk = sin(qk f 0) 
(6) 

where qk is the phase of the carrier at the sampling instant and 0 is an arbitrary phase shift that is canceled 
in the differential operation. 



After the detection operation: 

where wk-1 and zk-1 are the one-symbol. time-delayed values of wk and zk, respectively. 

Data Recovery 

Equations (7) and (8) retrieve the phase change between two successive symbol intervals. Using Table 1 
and the values of xk and yk, it is simple to decode the dibit information transmitted according to the 
following hard decision rule. 

Symbol Timing 
Symbol timing is one of the most important aspects of the demodulator because the hard-decision decoding 
has to be performed for data recovery in the appropriate sample so that, in the presence of noise, the 
recovered iniormation is without error. In a TDMA environment where fast synchronization is required, 
differential detection is more advantageous, as it does not depend on the carrier recovery and phase lock 
in the beginning. The theory of symbol timing is based on a simple squaringlenergy comparison technique 
[6] .  Assuming four samples per symbol, the energy is calculated at every sample as 

e = xk2+ y12 
(11) 

In the beginning of timing acquisition, an assumed mid-baud sample (say sample 3) is used for data 
recovery. Sample 2 and sample 3 energies are designated as ep and en, respectively. At the assumed sample 
3, the value of en - ep is calculated. The cymbol timing is varied according to the following algorithm. 

Let thresh = a threshold value ; counter = a count value 

begin: 

If I e n -  ep i > thresh then goto ' correct ' 

else goto ' done ' 
correct: If en- ep > 0 then goto ' checkm ' 

else goto ' checkl ' 
checkm: countl = 0 

If countm - counter = 0 then goto ' advance ' 
else 

{ countm = countm + 1 
goto ' done ' } 

checkl: countm = 0 

If countl - counter = 0 then goto ' retard ' 

else 
{ countl = countl + 1 
goto ' done ' }  

advance: " Process to advance the timing by one sample " 
goto ' done ' 

retard: " Process to retard the timing by one sample " 
done : 



In this algorithm, the values of counter and threshold are initialized in the beginning to estimated values 
by trial and error. The value of counter can be kept small in the beginning of timing acquisition and later 
changed to a larger value so that the timing lock is maintained. This method is more stable with phase errors 
and small frequency shifts, as it does not depend on carrier recovery. 

Modem Implementation on the TMS320CSx 

lnterrupt Organization 

The data rate for the modem is 48.6 kbps, per the TIA specifications. The symbol rate for QPSK, then, is 
24.3 kbaudls, as every symbol comprises two bits. The number of sampleshaud chosen is four, both for 
the modulator and demodulator. This means the baseband filters at the modulator need to generate at least 
four filtered sampleshaud; hence, the minimum sampling frequency that is required is 97.2 kHz. The time 
available to complete the entire modem operation is quite critical, due to this high sampling frequency. For 
real-time operation, interrupts are generated at this rate. The consecutive interrupt routines are organized 
in a particular way for ease of implementation and code efficiency. Figure 4 details the operations 
performed in the consecutive interrupts. 

Figure 4. lnterrupt Organization 
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Modulator Implementation 

Pulse-Shaping Filter 

The pulse-shaping filters are designed using a commercial filter design package [9]. A 20-tap 
pulse-shaping FIR filter with a roll-off factor of 0.35 is designed, and the coefficients are stored in the 
program memory. The same set of coefficients are used for both I and Q filtering. The I and Q values (the 
filter inputs) do not change over a complete symbol period. This means once the modulator look-up table 
is read in the first interrupt, these values remain unchanged for the next three interrupts. Therefore, the 
interpolation technique is employed in filtering. An interpolation factor of 4 is achieved. Thus, the number 
of coefficients used in multiplication is reduced to 2014 = 5. The number of filter delays used is also 5. This 
interpolation technique saves three-fourths of the time required to run the normal filter. The delays are 
updated once in four interrupts; specifically, in the interrupt just before the table look-up is done. The five 
I delays are immediately followed by five Q delays in the internal dual-access random-access memory 
(DARAM). The MADS instruction is used in the first three interrupts for multiply and accumulate. The 
MADD instruction is used in the fourth interrupt because the delays are also updated so that the new I and 
Q values can be loaded. The BMAR register is loaded with the appropriate address before the modulator 
filter is called in the main routine. Since it is an interpolation filter, the filter coefficients are rearranged in 
different blocks of five consecutive locations in program memory, so that the appropriate set of coefficients 
is used by filters in the four consecutive interrupts. 

The modulator filter is implemented using one of the circular buffers in the 'C5x. The circular buffer is 
initialized in the beginning of the program as a decrement-type buffer. The circular buffer I and Q delays 
with the auxiliary register pointer (ARP) are as shown below. 

Qk + Circular buffer end low address 

Qk-1 

Qk-2 

Qk-3 
Auxiliary Q k 4  

register + a Ik 

pointer Ik-l 

Ik-2 

Ik-3 

Ik-4 + Circular buffer start high address 

The filter code is of the general format 

rptz #coefnum 

madslmadd *- 
apac 

sach 



The preceding filter code does not involve overhead such as loading scaled filter inputs, loading the filter 
pointer with the appropriate address, etc. Both I and Q filtering are performed using a single circular buffer 
with contiguous filter delay locations. 

The modulator circular buffer pointer points to location Ik at the start of the first interrupt. As shown in the 
modulator code, the new value of Ik is accessed from the look-up table and loaded, then decremented in 
such a way that it points to the Qk location. The new Qk value is then loaded and the pointer is modified 
so that it is reset to the start address. The BMAR register is loaded with the appropriate address so that the 
filter operates on the appropriate coefficients. The BMAR register allows the dynamic addressing for the 
filter instructions MADS and MADD. There is no data move involved in the filter for the first three 
interrupts. In the last interrupt, MADD is used so that a data delay creates the space for the next I and Q 
values. 

Differential Encoding and Signal Mapping 

As discussed in the Modulator subsection on page 115, Equations (1) and (2) implement differential 
encoding and signal mapping as a direct one-step process. Those equations can be further reduced and 
tabulated as shown in Table 2. 

Table 2. Reduced  quat ti on st 

Ak Bk lk Qk 

0 0 sincos x (lk-1 - Qk-l) sincos x (Ik-1 + Qk-1) 

0 1 -sincos x (Ik-1 + Qk-l) sincos x (Ik-1 - Qk-1) 

1 0 sincos x (Ik-1 + Qk-l) -sincos x (lk-1 - Qk-1) 

1 1 -sincos x (Ikw1 - Qk-1) -sincos x (lk-1 + Qk-1) 

1 f sincos = -= = 0.707 
42 

The following tables for odd and even symbols are generated from the equations in Table 2 and the naming 
pattern of the constellation in Figure 1. The values inside the parentheses (within the table entry) are the 
corresponding(Ik, Qk) values. Thecolumn headings of the table represent Ak, Bk and theconstellation point 
per the constellation of Figure 1. 

Table 3. Odd-Symbol Look-Up 



Table 4. Even-Symbol Look-Up 

Ak Bk even0 (0) even1 (1) even2 (2) even3 (3) 

0 0 (0, l )  (-1 ,O) (0, -1 1 (190) 

Modulator Look-Up Table 

The constellation points are named 0,  1,2, and 3, whether for an odd symbol or an even symbol. The odd 
symbols and even symbols are designated as symO and syml, respectively, and pcn stands for previous 
constellation. For example, pcnOsymO means that the previous constellation was numbered 0 and the 
present symbol is odd. The organization of the table is as follows. 

Table 5. Modulator Look-Up 

Address Naming Description Table Entry 

Lookup Table Main Base Address 

Setl's Base Address: pcnOsymO AkOBkO Ik value 

Qk value 

Next ~ddress t  

Akl Bkl - do - 

t ~ h i s  value is the next set's base address for the new symbol, and it is calculated relative to the look-up table's 
main base address. 

There are eight sets of table entries as shown above (pcnOsyml, pcnlsym0, etc.) with each set having 
entries for AkOBkO, AkOBkl, AklBkO, and AklBkl,  and each AkBk having three entries, totaling 96 entries. 



Updating the Look-Up Table 

An ARP pointer (for example, ar4) is used to point to the look-up table address. The following code excerpt 
gets new values for Ik and Qk from the modulator look-up table and updates the table address pointer. 

Modulator Table Manipulation Code 

Interrupt 

1st: lmmr bmar , #bmar 1 ; bmar reg = base address of 1st set 
; interpolation coeffts in prog mem 

lacc 
sach 

lacc 

sbrk 

calld 

sach 

z aP 
mar 

lar 

lacl 

sacl 

lac 1 

sacl 

lmmr 

calld 

zap 

noP 

#coef num I 

I 

Mod-fltr, *, ar2 ; 

data 

*+ 
datal 

bmar, #bmar2 

Mod-fltr, *, 

lacl scrdata 

noP 
XC 1, gt 

adrk #6 

load ik value 
store in filter's ik input location, 

load qk value 

sub coef. no (19) to point the qk 
filter input location 

call delayed filter 

store acc in filter's qk i/p location 

clear acc. & p reg. 

after filtering, arp=ar4 

ar4=next set's base address 

load 1st bit of dibit data 

store in var "data" 

load 2nd bit of dibit data 

store in var "datal" 

bmar=interpolation coeff. address 

call delayed filter 

clear acc. & p reg. 

nop to fill up delayed call 

; load 1st scrambled bit 

; no operation 

; if that bit is a 1 execute foll ins'n 

; add 6 to lookup table pointer 

lmmr bmar , #bmar 3 ; bmar=interpolation coeff. address 

calld Mod-fltr, *, ar2 ; call delayed filter 

dmov data1 ; move data1 into data 

zap ; clear acc. & p reg. 

lac1 scrdata ; load 2nd scrambled bit 

noP ; no operation 

xc 11 gt ; if that bit is a 1 execute foll ins'n 

adrk #3 ; add 3 to lookup table pointer 

lmmr bmar , #bmar4 ; bmar=interpolation coeff. address 

calld Mod-fltr, *, ar2 ; call delayed filter 

z aP ; clear acc. & p reg. 

noP ; nop to fill up delayed call 



In the first interrupt, after the I and Q values are accessed and loaded into the appropriate filter input 
locations, the filter is executed. The pointer ar4 now points to the location where the next set's base address 
is available, and this address value is loaded into ar4. In the second interrupt, the new dibit data is read. In 
the third interrupt, ar4 is incremented by 6 if the first bit of the dibit data is a 1; otherwise it is unchanged. 
In the last interrupt, ar4 is incremented by 3 if the second bit of the dibit data is a 1 ; otherwise it is unchanged. 
This way, ar4 is modified so that it points to the appropriate subset base address in the set chosen in the first 
interrupt. 

The differential encoding and signal mapping only takes three cycles (max) for the ARP modification in 
any interrupt. The modulator code is found to be highly efficient with this implementation. This is made 
possible with the powerful features of the 'C5x. The circular buffer feature enables absolute zero-overhead 
filtering. Dynamic addressing with MADS and MADD makes interpolation filtering easier. Single-cycle 
decision-making instructions like XC make look-up table pointer modification simpler. The instructions 
for delayed call, return and branching, and special instructions like ZAP and RPTZ reduce the various 
branch overheads. 

Demodulator Implementation 

The demodulator performs I and Q matched filtering, differential detection, data recovery, and symbol 
timing. Unlike the modulator, the operations performed by the demodulator in four interrupts are the same 
except for the symbol timing loop. 

Input Filtering 

The input I and Q matched filters have square-root raised-cosine frequency response. They are 20-tap FIR 
pulse-shaping filters similar to the modulator. But these filters cannot be implemented as interpolation 
filters because the sampled I and Q values are always different. Again, four sampleslbaud are chosen for 
the demodulator implementation. The I and Q filters are implemented using the second circular buffer, 
similar to the modulator I and Q circular buffer. The only difference is that MACD is used instead of MADD 
or MADS because the inputs are updated with every interrupt. 



Differential Detection 

Every time the demodulator filter is executed, the filtered Ik sample is made available in the accumulator 
buffer ACCB, and the filtered Qk sample is made available in the accumulator. This format is used for 
code-efficient differential detection. The accumulator buffer feature of the 'C5x is very useful as an 
accumulator backup, and data transfer between the accumulator and its buffer enhances its usage. 
Differential detection and energy calculation are performed by the following short code excerpt. 

sach zkl, 2 ; immly after i/p filtering, 
; store acc. in wkl 

lacb ; load acc. with acc. buffer 

sach wkl, 2 ; store it in wkl 

It wkl ; t reg = wkl 

mPY wkpl 

ltp zkl 

; P reg = wkl.wkl-1 

; t reg = zkl, acc = wkl .wkl-l 

mpy zkpl ; P reg = zk1 ezkl-1 

mPY a wkp 1 

sach xk 

ltp wkl 

mPY zkpl 

sqrs xk 

sach yk 

; P reg = Zkl-Wkl-1 

; acc = wkl.wkl-1 + zk1 .zk1-1 
; store acc. in xk 

; t reg = wkl, acc = zkl .wkl-l 

; P reg = wkl. zkl-I 

; p reg = xk2, 

; acc = zkl.wkl-1 - wkl. zkl-1 
; store acc. in yk 

lacc #zero ; clear acc. 

sqra yk ; P reg = ykZ 

apac ; acc = xk2 + yk2 
sach energy 

lacc addr 

calad 

dmov wkl 

dmov zkl 

; store acc. in energy 

; load symbol timing address 

; call delayed with address in acc. 

; move wkl into wkl-1 

; move zkl into zkl-1 

Notice from Equations (7) and (8) that every new filtered sample wk and zk is multiplied by wk-1 and zk-1, 
which are one symbol (that is, four samples) delayed. The segregation of interrupts facilitates efficient 
implementation. There are four sets of wk, wk-1 and zk, zk-1 used for four interrupts. As far as the first 
interrupt is concerned, wkl and zkl are the current filtered I and Q values and wkpl and zkpl are the 
one-symbol delayed values. Similarly, wkp2 and zkp2 are the one-symbol delayed values for the second 
interrupt, and so on. Hence, after performing the differential detection and energy calculation, two DMOV 
instructions move wkl and zkl into wkpl and zkpl to be used next time in that particular interrupt. The wkp 
and zkp values are allocated proper memory locations to perform this. Once differential detection is done, 
the symbol timing loop is called using CALAD, accommodating the two DMOV cycles. The main 
differential detection and energy calculation takes just 17 cycles. 



Symbol Timing 
Symbol timing is performed using a program address jump with instruction CALA. The organization of 
the symbol timing loop is as follows. The variable Addr is initialized to Samplel at the beginning of the 
program. 

Samplel : Output the second bit of the recovered dibit 
information ; 
Addr = Sample2 ; 

Sample2 : energyqrev = energy ; 
Addr = Sample3 ; 

Sample3 : energy-next = energy ; 
Recover dibit data and output first bit of the 
dibit information 
Run symbol timing algorithm 
If no correction : Addr = Sample4 
If advance correction : Addr = Samplel 
If retard correction : Addr = Sampld 

Sample4 : Addr = Samplel 

Sampld : Addr = Sample4 

As seen, if the timing is to be advanced, one sample is skipped. If the timing is to be delayed, one extra 
dummy sample address jump is inserted. 

Performance Results 

The performance of the modem implemented on the 'C5x under the AWGN environment is summarized 
here. 

Theory 
The theory of noise generation and addition is as follows. Note that VAR( ) and Std ( )represent the variance 
and the standard deviation functions. 

Signal power) - (var(signal)) 
S N R ~  = l o  loglo (Noise Power - 10loglO Vadnoise) 

For I & Q arms: 

Var(I signal) [Std(l signal)12 
Var-i = - - 

~ o ( s N ~ ~ B /  lo )  

Var(Q signal) [Std(Q signal)12 
Var-q = - - [-.. 1 10) lo(s~.. 110) 

Also 



Two independent Gaussian-distributed random-noise sequences, I-noise[k] and Q-noise[k], are generated 
using the Matlab software. The noise is added to the I and Q signals as shown below. 

Id and Qd are the two new demodulator input points that are generated using Matlab. 

Testing 

The modem implementation is tested using a file VO scheme in which the modem runs on a 'C5x EVM 
card and communicates with the host PC for a nonreal-time file transfer. The testing is performed with the 
setup shown in Figure 5. 

Figure 5. Modem Test Configuration 
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As shown in Figure 5, the assumed input data pattern is scrambled in the 'C5x to generate randomness in 
the input data. About 60,000 samples each of I and Q are generated by the modulator and stored in files. 
The 'C5x EVM talks to the PC through DSP-PC interface software for file transfer. The I and Q noise files 
are generated by Matlab and added with modulator output files. The demodulation and descrambling is 
done, and recovered data of 30,000 bits is stored in a file. The number of errors in the demodulator output 
file are counted in trials with various SNR values. The modem performance for the AWGN channel is 
shown in Figure 6. 
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Figure 6. BER Versus SNR for a Static AWGN Channel 
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Performance 

As seen in Figure 6, the performance in an AWGN environment closely follows the theoretical 
performance. Since this is a cellular modem, its performance also needs to be tested under fading conditions 
with Doppler shifts due to vehicle speed. The performance of this modem under such conditions is expected 
to be of moderate standards because the implementation involves restrictions such as fewer sampleslbaud, 
etc. The performance could be improved by employing more sampleshaud, a sophisticated symbol timing 
scheme, an automatic AGC, and an equalizer at the front end of the demodulator. As the number of cycles 
taken by the entire modem function is about 160, other extra features listed above could be accommodated 
to improve the performance under fading and Doppler-shift conditions. 

Speed and Memory Requirements 

Table 6 lists the number of 'C5x program and data memory words required by the core 
modulator/demodulator algorithm. It also provides the maximum number of cycles needed to run the 
modulator and demodulator. The hardware, VO interface, and program initialization requirements are not 
included here, as they do not fall within the time-critical loop of the modem implementation. Note that this 
table does not include the interrupt handling overheads. 

Table 6. Program Memory and Speed Requirements 

Module Name Program Memory Data Memory Cycles (Max) 

Modulator 76 + 116t 11 4 32 

Demodulator 246 + 20t 68 126 

t This is the size of program memory used for loading tables, etc. 



The maximum number of words and cycles used by the various modules of the modulator and demodulator, 
including the different overheads, are shown in the following tables. 

Table 7. Modulator Code Size and Execution Time 

Module Name Size in Words Cycles (Max) 

Mod-Main 55 + 96t 13 

Mod-Fltr 21 + 20t 19 

t This is the size of program memory used for loading tables, etC. 

Table 8. Demodulator Code Size and Execution Time 

Module Name Size in Words Cycles (Max) 

Dmd-Fltr 11 + 20t 52 

t This is the size of program memory used for loading tables, etc. 

As the above tables show, both the modulator and demodulator have been well optimized to accommodate 
future addition of modules, if necessary, for performance improvements. There is also a large portion of 
unused internal RAM for future memory requirements. 

Summary 

The IS-54 U.S. digital cellular modem concepts are introduced and the theory of n/4-QPSK with signal 
constellation is discussed. The modem implementation on the TMS320C5x is explained and the 
performance of the modem with AWGN is summarized. Also, the requirements of the modem regarding 
speed and memory are tabulated. The efficiency and capabilities of the TMS320C5x for the high-bit-rate 
cellular modem application are clearly visible from the modem implementation. This implementation 
needs to be further studied under Rayleigh fading with co-channel interference and Doppler shift. 
Improvements for the demodulator are suggested. The modem program is made highly modular and is 
developed according to the TI Communication Software Library (CSP) developer's guidelinesl. This 
7c/4-QPSK cellular modem implementation on the TMS320C5x family of DSPs provides guidelines for 
cellular-systems designers to employ in using the 'C5x DSP for all cellular and related applications. 

Code Availability 

The associated program files are available from Texas Instruments TMS320 Bulletin Board System (BBS) 
at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com. 

1 Refer to "Software Coding Guidelines for 'C5x Developers", p. 247 of this book. 
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Abstract 

Mobitex is a packetized wireless 900-MHz wide area network (WAN) that allows mobilelportable 
subscribers to transfer data, including e-mail, through the growing national and international network 
infrastructure. The network operates with an 8-kbps data rate using GMSK.3 modulation. User terminals 
are typically sophisticated portable or mobile devices that encompass one or more applications and all 
additional OSI protocol layers necessary to send and receive data on the network. Within the user terminal, 
the interface between the radio (physical layer) and other layers is a high-performance Gaussian minimum 
shift-keying (GMSK) modem. During transmission, the modem converts packets of network data into 
transmit baseband. For receiving, it demodulates similar waveforms into data decisions. The typical 
Mobitex modem produces at least part of the physical-layer processing necessary for radio interface. 

The cellular industry solution for packetized data is called cellular digital packet data (CDPD). The modem 
waveforms used for Mobitex are similar (GMSK), though CDPD uses 19.2 kbps. Core GMSK concepts, 
however, still apply; therefore, the modem design described herein can also be used as a basis for CDPD 
modem development in the future. 

Synetcom Digital Incorporated has developed a DSP-based Mobitex modem that accomplishes the radio 
interface. Transmit data in packet form is level shifted and Gaussian filtered digitally within the modem 
algorithm so that it is ready for transmitter baseband interface, either via D/A converter or by direct digital 
modulation. Receive data at either baseband or intermediate frequency (IF) from the radio receiver is 
digitized and processed by the modem-nearly optimally-into data decisions. Packet synchronization 
is also handled by the modem, assuring that the next layer sees only valid Mobitex packets. Received signal 
degradation from frequency offsets, multipath (Rayleigh) fading, and other effects is anticipated and 
addressed in the modem design. 

Introduction 

About Mobitex 

Mobitex is a packetized narrow-band data service operating near 900 MHz (450 MHz in the United 
Kingdom), originally conceived by Swedish Telecom and further developed by Eritel, a joint venture of 
Swedish Telecom and Ericsson. The service is being offered in the United States by RAM Mobile 
DataIBell South. Base stations, which typically cover 5-15 mile radii, are arranged in a cellular-like 
fashion. Network roll-out has proceeded to the extent that coverage within the top 200 U.S. metropolitan 
areas is advertised. At Synetcom Digital Incorporated's Redondo Beach, California office, five base 
stations are audible on an indoor cellular whip, four of which have usable signals. 

Other Networks 

Mobitex falls into the class of wireless WANs. There is at least one other operational infrastructure, called 
Ardis (IBMIMotorola), and several more are anticipated, including CDPD from McCaw Cellular and its 
partners. 



Mobitex Terminal Hardware Architecture 
Figure 1 shows a typical terminal architecture. Controller CPU functions typically handle higher OSI 
layers, which form packets, provide error coding and scrambling, handle acknowledgments, and control 
transmitter and receiver operation. 

Figure 1. Typical Mobitex Terminal Architecture 
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WAN Modems and the Radio Channel 
WAN modems are designed to operate with signal distortions produced by multipath frequency offsets and 
nonideal radio IF filters. Multipath distortion occurs when a signal reflection causes propagation along 
several paths across the link. Different path lengths and reflections produce signal components with 
unequal amplitude and delay, which vector sum at the receiver. For fixed links, the vector sum looks like 
a superposition of comb filters in the frequency domain. In the time domain with long delays, symbol 
energy is smeared; this smearing is known as intersymbol interference (ISI). A null (cancellation) or 
significant slope at or near the carrier frequency causes severe distortion to the received signal, which can 
degrade bit error rate (BER) performance. 

The actuai multipath parameters vary spatially for mobile links. The receiver sees time-varying comb 
functions with nulls that traverse the spectrum and momentarily align with the signal frequency, causing 
deep fades. Under these conditions, the received carrier-envelope amplitude has been shown theoretically 
and experimentally to conform to a Rayleigh distribution. Based on this model, it has been shown that 
99.9% of fluctuation occurs within a dynamic range of 40 dB [I]. 

Typical radio systems allow for some frequency error (tight frequency tolerance is expensive), which may 
degrade modem receive performance. Receiver IF and baseband filtering is also never ideal and can 
introduce additional waveform distortion from ISI. 

The Mobitex modem design described herein anticipates these and other distortions and has been shown 
to operate satisfactorily in laboratory simulations of the degradations. Mobile field tests are anticipated to 
further qualify modem performance. 

Advantages of DSP Modems 
Modem DSP code is written to closely approximate the ideal modem architecture- typically, more closely 
than an analog implementation approximates it - potentially realizing outstanding modem performance 
that is repeatable over time and temperature. The approach is flexible because all modem parameters can 
be trimmed in software. 

A DSP can assume other chores in the user terminal and may become the platform for additional protocol 
layers required for a given network, assuming enough spare MIPS are available, and it may even be 
reconfigured to interface with other networks on multiple layers. 



DSP chips are on the same fast track as CPUs, with smaller feature size, higher speed, lower power, and 
lower voltage required with each new generation. Competition among several major corporations has 
brought pricing down to levels that compete favorably with discrete analog and ASIC implementations. 

Mobitex DSP Modem Characteristics 

Code Size and DSP MIPS Requirement 

The Mobitex modem code is actually two distinct algorithms associated with half-duplex transmit and 
receive functions. The receive (digital demodulator) algorithm is more complex and embodies most of the 
important features necessary for a successful modem design. As with all modems, receiver code requires 
more processor power, as shown in Table 1. 

Table 1. Receiver-Code Processor Power Requirements 

Function Code Size TMS320C25 MIPS Requirement 

Transmit GMSK Modulator 256 words 3 

Transmit PN Generator 128 words 1 

Receiver Digital Demodulator 500 words 6 

Receiver ~iscriminatort 128 words 4 

t Discriminator code is required if the N D  interface is receiver IF. 

Bit-Error-Rate Performance 

The BER performance of a pair of the Mobitex modems was measured in the laboratory. GMSK IF and 
Gaussian noise are summed to create an approximation of the noisy radio channel, representative of weak 
receive signals. Signal and noise power levels are calibrated relative to each other and converted to Eb and 
No values through bit rate and equivalent bandwidth normalization. The test scenario increments noise in 
l-dB steps and captures BER data. 



Results are plotted against theoretical performance in Figure 2. Performance is quite close to ideal 
(<0.5 dB) over the range of data shown. Transmit GMSK is a continuous 29-1 pseudorandom noise (PN) 
code. 

Figure 2. Bit Error Rate Versus EdN, Modem Performance 
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Modulator Design 

GMSK.3 Modulation 

GMSK has been widely proposed and utilized for mobile radio data communications. In addition to 
Mobitex, GMSK is used for GSM (European digital cellular) and CDPD in the U.S. Several characteristics 
that make it especially attractive for these applications are: 

Spectral efficiency (12.5-kHz channels for 8-kbps GMSK.3) 
Constant RF envelope (efficient classC amplifiers and hard-limiting receivers) 
Compatibility with analog FM techniques 
Reasonable performance (assuming proper modem techniques) in multipath environment 

As illustrated in Figure 3, GMSK.3 is generated with Gaussian low-pass filtered bipolar data, applied to 
a DC coupled FM modulator, set to a modulation index of 0.5. 

Figure 3. Idealized GMSK.3 Generation 

The .3 suffix on GMSK refers to the BT, or bandwidth, symbol time product. Alternatively, BT can be 
expressed as the ratio: 

F, / F, = 0.3 for GMSK.3 

where Ft, is the transmit filter with a 3-dB bandwidth and 2.4-kHz frequency, and F, is the symbol rate. 

Fsym=8 kbps F3d~=2.4  KHz FM Modulator 

As the ratio increases, more energy at higher frequencies is transmitted, occupying more radio spectrum. 
A decrease in ratio below 0.2 attenuates higher frequencies significantly, compromising obtainable 
performance. 
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The eye pattern for GMSK.3 baseband signals is shown in Figure 4. An eye pattern conveys every possible 
trajectory in the transmitlreceive data baseband waveform synchronized to symbol timing. It is useful 
because it can very quickly convey thefidelity of transmit and receive data and is a strong diagnostic tool 
in the wireless development environment. 
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Figure 4. Eye Pattern for 8-kbps GMSK.3,215-1 Length 
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GMSK Modulator Architecture 

A block diagram of the modulator DSP implementation is shown in Figure 5. 

Figure 5. GMSK Modulator DSP Implementation 
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The present GMSK modulator algorithm accepts data from upper OSI layers that has been packetized, error 
encoded, and scrambled according to Mobitex specifications. In most systems, this is accomplished on a 
CPU in the application computer or in a separate microcontroller. Ultimately, these functions can occur on 
the DSP. 

The modulator algorithm either accepts external data or can generate pseudorandom (PN) data with z7-1, 
29-1, and 215-1 length codes for transmit test purposes. This feature enables easier bit-error-rate 
measurements, eye-pattern checks, and other system measurements during integration with radio gear. 



The DSP algorithm implements a level shift and digital low-pass filter function on the square data provided 
by the other OSI layers or the algorithmic PN generator. A 12-tap (two symbol length) linear-phase FIR 
structure forms the transmit filter, which is designed to approximate the ideal Gaussian transmit filter very 
closely. The FIR 3-dB point is set to 2.4 kHz for BT = 0.3. The modulator sample rate is 48 kHz, producing 
a baseband bandwidth with significant energy out to approximately 5 kHz and virtually no energy beyond 
10 kHz. 

The modem exists on an evaluation board that contains a 16-bit D/A converter and low-pass reconstruction 
filter that attenuates digital spectra beyond fs/2 (24 kHz) to levels near the noise floor. Other 
implementations can exploit the latest single-chip CODEC or analog interface circuits, which combine 
several D/A and reconstruction filter blocks with AID converters. A single chip can thus furnish the entire 
radio-analog interface. Ten-bit precision D/A converters are adequate for this application. 



GMSK Demodulator Design 

GMSK Demodulator Architecture 
A block diagram of the demodulator structure is shown in Figure 6. The upper half of the figure shows an 
external interface to a 900-MHz radio receiver. Either a baseband or an IF interface is possible with this 
algorithm. The IF interface includes an FM discriminator function in the DSP code. 

Figure 6. GMSK Demodulator DSP Implementation 
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The demodulator algorithm employs noncoherent techniques to arrive at each data decision. Two entry 
points for digitized data from the receiver are shown in Figure 6. 

Digitized IF Processing 

As the cost and power consumption of DSP MIPS and associated A/D converters decrease, it will make 
sense to locate the A/D converter closer to the antenna, somewhere in the radio IF strip. Traditionally, 
digital processing at IF has been applied to expensive military systems in which the highest possible 
receiver performance is required. As DSP costs decrease and techniques improve, IF processing may 
become standard in wireless applications, where both benefits-cost and performance-are possible. In 
anticipation of this next step, a radio IF interface to the DSP demodulator algorithm was created. 

Band-limited radio IF (presumed to be at 36 kHz center, 12.5 kHz wide for Mobitex) is digitized at a sample 
rate of 48 kHz, realizing a digital down-conversion to a center frequency of 12 kHz. The DSP algorithm 
then implements a close approximation of a 0°/900 splitter that feeds a pair of identical, 7-tap low-pass 
FIR receive filters, carefully bandwidth optimized under noise conditions for best overall demodulator 
performance. 

Digital FM Discriminator 

The FM discrimination algorithm maps the frequency of complex IQ samples to a voltage using a 
differential estimation technique. Sample-rate decimation by a factor of 2 is also used, yielding subsequent 
processing that executes only on every other input IF sample. After decimation, the discriminator 
normalizes each sample by 12 + 4 2  to wipe off any IF energy variation, due to radio channel fades that fall 
out of the receiver's hard limiting or AGC range. The dynamic range of the normalization algorithm 
approaches 40 dB when used with a 12-bit A/D converter. 

Normalization becomes a significant issue if the receiver RFAF chain must have linear or AGC 
loop-controlled gain. Certain modulation types require linear receiver performance. In a 
multinetwork/infrastructure environment, linearity may be a requirement. The normalization algorithm 
exists to cover that eventuality, even though most implementations to date have used hard limiting and 
traditional FM receiver techniques. 

Baseband Processing 

A second entry point to the demodulator algorithm can be selected just after the digital FM discriminator 
of Figure 6. The receiver baseband (audio DC to 8 kHz) that carries the data waveform is digitized by at 
least an 8-bit AD converter at a sample rate of 24 kHz. Less precision is required because the receiver hard 
limiting and discriminator mitigate most of the envelope fluctuation due to flat signal fading. Processing 
beyond this point is identical regardless of which input is selected. 

Packet Acquisition 

All received Mobitex packets are qualified by an acquisition process that recognizes and exploits 
information in the first two data structures of the Mobitex packet, which is shown in Figure 7. 



Figure 7. Mobitex Packet Structure 
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When the demodulator is not tracking and demodulating a qualified packet, an FIR filter-based structure 
that implements pattern specific correlation is executed. The correlator searches for the bit sync pattern. 
When correlator output exceeds a preset threshold, demodulation begins and frame sync, which is a fixed, 
country-specific pattern 16 bits long, is expected. If frame sync does not occur within the next 16 bits with 
one bit error or less, the packet acquisition attempt is abandoned and the correlation process is begun again. 
In this manner, probability of false acquisition is kept very small, and higher OSI layers in the user terminal 
receive data only when qualified packets are present. 

Simultaneous to successful correlation, a low-bandwidth tracking-loop algorithm is invoked. Data 
transitions (zero crossings) are extracted, and the algorithm attempts to keep crossings aligned by adjusting 
the DSP timer register, which ultimately generates sample pulses to the A/D converter. The resulting servo 
loop is invoked as long as the qualified packet data is present. This feature is especially important for long 
packets and operates reliably even with very weak receive signals. 

Also, after each successful correlation, a DC estimate (which is proportional to receiver frequency offset 
relative to base station) is extracted from the bit sync sequence and is used to cancel DC offsets in the 
baseband demodulation (track) path. The modem performance is made tolerant of frequency offsets in this 
manner. 

Finally, the correlator triggers an A/D sample timing preset. Correlator output information is examined, 
and a precise estimate of correct initial A/D sample phase and frequency is made. The preset timing is 
subsequently updated very slowly at each zero crossing with the aforementioned servo loop. 

Data Demodulation 
After correlation to the packet bit sync pattern occurs, the data demodulation/decision process begins. 
Conceptually, the goal of the decision process is simple: every three samples (at 24 kHz) produce either 
a zero or one data decision such that the original packet data, prior to modulation, is recovered. 

The decision process employs matched filtering (which is identical to transmit filtering), 
integrate-and-dump, and decision feedback techniques to minimize the probability of bit errors. The 
integrate-and-dump and decision feedback algorithms are especially effective under disturbed conditions, 
such as with either fixed or time-varying multipaths, and they also reduce modem sensitivity to IS1 induced 
by receiver filters. 



Design Adaptations for CDPD 
The CDPD modem requirement is for GMSK.5 radio waveforms at 19.2 kbps. CDPD utilizes cellular 
channels that are full-duplex; the packetized protocol can use this characteristic, though a half-duplex 
CDPD implementation is also possible. A computer simulation of the transmit eye pattern for GMSK.5 is 
shown in Figure 8. 

Figure 8. Computer-Simulated Eye Pattern for 19.2 kbps GMSK.5 
(Amplitude Versus Time) 

As compared to Mobitex, the higher baud of CDPD dictates use of a more powerful DSP chip, such as one 
from TI'S TMS320C5x family, to support the modem function. Generally speaking, a good estimate for 
half-duplex CDPD MIPS required for the GMSK demodulator can be obtained by simply scaling the 
6-MIPS benchmark for the baseband-interfaced Mobitex demodulator. A conservative approximation is 
based on the ratio of bauds (19.2 / 8 = 2.4). CDPD, therefore, can require up to 14.4 MIPS peak for the 
receive modem function. 

Digital demodulators can operate with fewer samples per baud than were assumed above. The Mobitex 
modem uses an AID converter to sample IF at 48 kHz or baseband at 24 kHz. The algorithm ultimately uses 
three samples per 8-kHz symbol in the data-decision section. 

For CDPD, it is estimated that if two samples per baud are used, approximately 0.7 dB of performance is 
sacrificed. The associated baseband sample rate is 38.4 kHz, and the corresponding MIPS requirement is 
approximately 10 (33% less than the 3 samples-per-baud case). 

CDPD's GMSK.5 uses a higher BT factor (0.5). The immediate result is an eye pattern that is less filtered 
than shown in Figure 4. Overall modem receive performance is correspondingly improved. Adjustments 
of constants in the current decision feedback algorithm are necessary to optimize performance, though the 
current constants (based on GMSK.3) will operate surprisingly well. 

CDPD transmit baseband eye pattern has been simulated and is shown in Figure 8. The Gaussian transmit 
filter 3-dB frequency is 9.6 kHz. The transmit and receive Gaussian digital filter is adjusted for the new 
bandwidth. 



Transition of GMSK Modem to TMS320CSx 

Work has begun to translate the existing 'C2x code to a 'C5x processor. The GMSK modulator and portions 
of the demodulator algorithm are currently able to execute successfully on TI's EVM system. The 
translation is very straightforward, using TI's DSP assembly conversion utility (DSPCV.EXE), and the 
utility is able to convert 'C2x source code (.ASM) files directly to 'C5x source code files. A minor amount 
of manual intervention is necessary after running the utility. This intervention is associated with memory 
directives that do not have exact equivalents between the two processor families. 

Conclusions 

Packet networks such as Mobitex or CDPD generally operate with a sophisticated protocol that allows for 
error detection, limited error correction, and, if all else fails, packet retransmission. All data is eventually 
received successfully across the link. High-performance modem techniques are employed to meet overall 
network performance requirements because inferior modems can generate unnecessary traffic, requiring 
repetition of missed data. 

The Mobitex modem code exists on a 16-bit fixed-point TMS320C25, which is an entirely adequate 
platform for the core modulation~demodulation algorithms implemented. No issues associated with the 
16-bit fixed-point precision were encountered. In general, no applications are envisioned in which 
floating-point processors or wider fixed-point registers are necessary for wireless modems anticipated for 
future implementation. 

The existing code is portable to the Texas Instruments TMS320C5x family, which will ultimately offer 
3.3-volt, 40-MIPS operation, suitable for battery-powered portable operation. The fully implemented IF 
interface Mobitex modem algorithm requires 10 MIPS for demodulation. The 'C5x family and similar 
processors from other manufacturers open prospects for other layers of wireless protocol executing on the 
same DSP, with ultimate partitioning of DSP and controller-processing responsibilities dictated by 
DSP/processor cost, memory requirements, speed and power consumption, and interface issues. All new 
designs should weigh these issues carefully. 

The DSP chip offers flexibility beyond Mobitex. Multiple wireless infrastructures, including CDPD, can 
ultimately be accommodated on the same processor, which, in fact, may be necessary for long-term product 
survival. As wireless/PCN industries take shape, the emphasis will likely be on flexibility. Systems that 
are incompatible starting at the lowest 1inWphysical layers will dictate that user radiolmodem devices be 
capable of loading and executing new modem and control (protocol) code as needed. A single user terminal 
can thus interface with multiple infrastructures. 

Code Availability 

The associated software is available for licensing from Synetcom Digital Incorporated, 1426 Aviation 
Boulevard, Suite #203, Redondo Beach, California 90278. 
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Introduction 

DSP-based equalizer systems have become ubiquitous in many diverse applications including voice, data, 
and video communications via various transmission media. Typical applications range from acoustic echo 
cancelers for full-duplex speakerphones to video deghosting systems for terrestrial television broadcasts 
to signal conditioners for wireline modems and wireless telephony. The effect of an equalization system 
is to compensate for transmission-channel impairments such as frequency-dependent phase and amplitude 
distortion. Besides correcting for channel frequency-response anomalies, the equalizer can cancel the 
effects of multipath signal components, which can manifest themselves in the form of voice echoes, video 
ghosts or Rayleigh fading conditions in mobile communications channels. Equalizers specifically designed 
for multipath correction are often termed echo-cancelers or deghosters. They may require significantly 
longer filter spans than simple spectral equalizers, but the principles of operation are essentially the same. 

The literature is rich with practical and theoretical treatments of the various equalization schemes. This 
article attempts to familiarize you with some basic concepts associated with channel equalization and data 
communication in general. It is hoped that the liberal use of signal plots will lead to an intuitive 
understanding of such concepts as intersymbol interference and multipath effects. To this end, the Mathcad 
4.0 [15] files used to create the figures have been made available. See the Code Availability section on page 
174. You are encouraged to experiment further with these files. For a more rigorous mathematical 
treatment, refer to the numerous books and articles cited on page 174. Of particular note is the excellent 
tutorial by Shahid Qureshi [I], after which this article is loosely patterned. 

Of particular interest today is the area of digital cellular communications, which has seen wide use of 
fixed-point DSPs such as the TMS320C5x. This family of processors provides the processing power to 
perform the requisite adaptive equalization while at the same time handling such tasks as channel coding, 
error correction (-terbi algorithm), and vocoding functions (VSELP), thus providing a highly integrated 
and yet flexible solution to baseband processing. The last section of this paper provides a brief survey of 
adaptive equalization for digital cellular systems. For a detailed application example, please see the 
application report Channel Equalization for the IS-54 Digital Cellular System With the TMS320C5.x on 
page 177. 

What Is Intersymbol Interference? 

Consider what happens when pulsed information is transmitted over an analog channel such as a phone line 
or airwaves. Even though the original signal is a discrete time sequence (or a reasonable approximation). 
the received signal is a continuous time signal. Heuristically, one can consider that the channel acts as an 
analog low-pass filter, thereby spreading or smearing the shape of the impulse train into a continuous signal 
whose peaks relate to the amplitudes of the original pulses. Mathematically, the operation can be described 
as a convolution of the pulse sequence by a continuous time channel response. 

The operation starts with the convolution integral: 

where r(t) is the received signal, h(t) is the channel impulse response, and x(t) is the input signal. The second 
half of the equation above is a result of the fact that convolution is a commutative operation. 



Component x(t) is the input pulse train, which consists of periodically transmitted impulses of varying 
amplitudes. Therefore, 

x(t) = 0 for t # kT (2) 

x(r) = 'Y, for r = kT (3) 

where T represents the symbol period. This means that the only significant values of the variable of 
integration in the above integral are those for which t = kT. Any other value of t amounts to multiplication 
by 0. Therefore r(t) can be written as 

This representation of r(t) more closely resembles the convolution sum familiar to DSP engineers. Note, 
however, that it still describes a continuous time system. It shows that the received signal consists of the 
sum of many scaled and shifted continuous time system impulse responses. The impulse responses are 
scaled by the amplitudes of the transmitted pulses of x(t). 

As an example, consider the calculation for r(t) at some noninteger time index (t = 1.1) 

One can see how received values for any time t are computed. Each pulse value of the input sequence, xk, 
contributes a component of the output summation. 

Because you are interested in processing the received signal on digital hardware, you must represent the 
received signal as a difference equation. Physically, you are periodically sampling the received waveform. 
For the case of pulse-amplitude modulation, it is sufficient to sample the received signal at the symbol 
transmit rate, 11~2 .  (In some instances it can be advantageous to sample at a multiple of the symbol rate 
to implement afractionally spaced signal processing system.) To represent the sampling mathematically, 
replace t with nT, where, again, T is the symbol transmit rate: 

which can also be written as 

One last factor to account for is sampling phase. Unless the sample clock is perfectly synchronized with 
the transmit clock, the sample-phase offset will be nonzero. To account for an arbitrary phase offset in the 
equation above, add an offset to to the time index. 



In the equation above, the first term is the component of r(t) due to the Nth symbol. It is multiplied by the 
center tap of the channel-impulse response. The other product terms in the summation are intersymbol 
interference (ISI) terms. The input pulses in the neighborhood of the Nth symbol are scaled by the 
appropriate samples in the tails of the channel-impulse response. Below are numerical examples for various 
values of n with @ = 0.1 for values of k spanning the five sample neighborhoods around n. 

Figure 1 illustrates a pulse train to be transmitted. The center pulse is %, the pulse at 1 is xi, the pulse at 
-1 isx-1, etc. If you assume an arbitrary impulse response for the transmission channel, you can construct 
the received signal r(t). This signal is shown superimposed on the transmit waveform x(t). In actuality, the 
received waveform would be time shifted because of the channel delay, but for clarity r(t) is shown with 
no delay relative to x(t). Note that the peaks of r(t) roughly relate to the sense of the corresponding transmit 
pulses; however, the value of r(t) at the sample instants can be quite different from those transmitted. This 
is because of IS1 effects. 

Figure 1. A Pulse Train to Be Transmitted 

Figure 2 shows the component of r(t) due to a single input pulse xi, which is superimposed on the received 
signal r(t). Recall that the shape of this component is the same as that of the transmit-channel impulse 
response. The values of this individual pulse response at the sample periods (which are multiples of T) are 
indicated by the black dots. Note that although the signal component in this example is sinc shaped, the 



To determine the value of the received signal at t =0, r(O), sum the contributions of the received impulse 
responses due to x,, x-,, x,, x-,, x ,... . 



Figure 3. Contribution Due to x-1 

As shown in Figure 3, the contribution due to x-1 is the value at t=O of the scaled and shifted impulse 
response corresponding to the x-1 transmit pulse. In this case the impulse response is scaled by -1, which 
is the value of x-l and is advanced by one sample period because x-1 is transmitted one period prior to q. 
Therefore, the x-1 symbol results in a small negative component of r(0). 



Figure 4. Contribution Due to x l  at t=O 

Similar reasoning explains the contribution due to xl , except this time use the value of the time-delayed 
impulse response at t = O  as illustrated in Figure 4. 

The received value of r(t=O) is computed by summing the contribution of xg plus all of the IS1 terms; that 
is, x+,-,, x+ , -~ ,  x+,-~, ... . Theoretically, this is an infinite sum, but as shown here, the channel response 
is typically a decaying exponential. Therefore, in practice, an FIR system can be used to model and 
compensate the system. 

From the example above you can see that the nth received sample is primarily influenced by the nth symbol 
transmitted; however, there are IS1 components contributed by prior and subsequent transmit symbols. The 
terms due to prior symbols (x,-~ and before) are termed postcursor IS1 [3] because the nth transmitted 
symbol affects on symbols following the nth received symbol. The nature of this IS1 can be determined by 
examining the right-hand portion of the system impulse response. Alternately, the IS1 terms due to 
subsequent transmit symbols (x,+~ and beyond) exert precursor IS1 [ 3 ]  because the nth transmit symbol 
influences received symbols prior to the nth. These IS1 terms are determined by the shape of the left-hand 
portion of the system impulse response. 



Pulse Shaping 

From the preceding figures, it is apparent that IS1 is caused when the tails of the received pulses overlap 
at the sample points, causing uncertainty in the received pulse amplitude. It is possible to shape the transmit 
pulses in a manner designed to minimize the effects of IS1 on the received waveform. As shown in Figure 
5, the set of shifted pulse responses overlap, but their tails all possess nulls at the sample instants. Therefore, 
the only contribution to r(nT) is due to the nth transmit pulse. As shown below, the received signal r(t) 
equals the amplitude of the individual sinc functions at the sample instants. Compare this with the previous 
example in which r(t) has a more ambiguous relationship to the individual pulse responses. 

Figure 5. Set of Shifted Pulse Responses 

If a received pulse shape can meet the following property, zero IS1 can be achieved: 

Equation (12) simply means that there are zero crossings at the sample rate. It can be shown that this results 
in a spectrum possessing vestigial symmetry. That is, the frequency response exhibits odd symmetry about 
1/2T, causing the sum of repeat spectra to equal a constant. It is important to note that this spectrum may 
be closely approximated by a realizable filter having a gradual rolloff around 1/2T. 



Figure 6. Odd Symmetry 
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Figure 6 illustrates the notion o f  odd symmetry. 

Figure 7. Spectral Response at 1/(2T) 
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Figure 7 shows the spectral response around 1/(2T). The repeat spectra centered at 1/T actually overlaps 
the baseband spectrum, but as long as the sum of the two responses is constant, the criterion for zero IS1 
is met. 

One class of linear phase filters possessing vestigial symmetry is the raised cosine family: 

This filter is flat up to 1/(2T)-/I and 0 beyond 1/(2T)+p.  The complicated part of the equation above 
describes the shape of the odd symmetric transition band. Closer inspection of the equation for the 
transition band quickly reveals the shape of the signal. It is really the cosine of an argument ranging from 
0 to n with a DC offset of +1, hence raised cosine. The other variables scale the backwards S shape in the 
x and y dimension to fit the curve into the flat portions of the response. 

The impulse response of the signal possessing the raised cosine spectrum is as follows: 

Note that the Equation above can be broken into two parts: the familiar sinc function, which insures that 
the product will have nulls at multiples of T, and a second term that is an exponentially decaying sinusoid 
whose rate of decay is proportional to p. The time response of the raised cosine signal for various values 
of p is shown in Figure 8. 



Figure 8. Time Response of the Raised Cosine Signal 

It is common practice to filter the signal pulses at the transmitter with the frequency characteristic described 
above in Figure 8. Having performed this operation, if the signals are sent down an ideal channel (that is, 
a channel with a channel-impulse response of 6 function and no noise), the received signal should exhibit 
no ISI. Note that in general this condition will not be met, as the channel will have its own shaping effect 
on the transmitted signals. The effects of noise are considered in the next section of this paper. 

In summary, the obvious problem caused by IS1 is uncertainty in the received data samples. Instead of 
receiving the discrete levels that were transmitted, the receiver finds a continuous signal whose samples 
can take on any value. The receiver must then form an estimate from the received values to decide on the 
transmitted signal. 



Equalization 

As discussed in the Pulse Shaping subsection on page 155, a properly shaped transmit pulse resembles a 
sinc function, and direct superposition of these pulses results in no IS1 at properly selected sample points. 
In practice, however, the received pulse response is distorted in the transmission process and may be 
combined with additive noise. Because the raised cosine pulses are distorted in the time domain, you may 
find that the received signal exhibits ISI. If you can define the channel impulse response, you can 
implement an inverse filter to counter its ill effect. This is the job of the equalizer. See Figure 9 below, which 
depicts the response to a single transmit pulse at various points in the system. 

Figure 9. Transmission Process With Example Pulse Responses 

The original rectangular transmit pulse is shaped by the raised cosine filter. This ensures that the sampled 
spectra do not alias and therefore there is no ISI. The next waveform portrays the distorted impulse 
response received at the input of the equalizer. This distortion can be caused by spectral shaping due to a 
nonflat frequency response or multipath reception of the channel. This distortion can be removed by 
applying a filter that is the exact inverse (multiplicative inverse in spectral domain) of the channel 
frequency response. 



Multipath Effects on Frequency Response 

Multipath effects describe the situation in which there are several propagation paths from transmitter to 
receiver. Most commonly, this results when there are reflected signals detected at the receiver following 
the direct path. The multipath phenomenon can be modeled by an FIR system. The center tap represents 
the direct path, while the succeeding tap weights represent the amplitudes, delays, and phases of the 
reflected paths. What does this look like in the spectral domain? For simple examples, see the two cases 
described in Figure 10 and Figure l I .  

Figure 10. Case 1: Ideal Channel, No Multipath Effects 

Figure 10(a) above shows the time response of an ideal transmission path, which is a 6 function. Such a 
channel exerts no spectral distortion or delayed signals. Figure 10(b) shows the spectral response of such 
a system. Note that the frequency magnitude response is perfectly flat, as indicated by the solid horizontal 
line. 



Figure 11. Case 2: System With a Single Unattenuated Multipath Channel 

Figure 11 (a) shows the time response of a system that contains a single multipath channel. The first nonzero 
sample of the response represents the direct path, while the second represents a delayed path to the receiver. 
In this instance, the pulses are identical in amplitude and phase and are separated by ten sample intervals. 
Notice in Figure 1 l(b) that the magnitude response exhibits @I2 nulls, where @ represents the sample delay. 
Even though you are effectively adding two identical flat spectra (as shown in Figure 10(b)), the time delay 
results in a phase delay in the spectral domain. This phase delay results in nulls where the two signals are 
of equal amplitude but opposite phase. 

Obviously, multipath effects can have major effects on the system spectral response, thereby providing 
another justification for channel equalization. 



Figure 12. Equalization Process 
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As depicted in Figure 12, the task of the equalization system is to determine and apply a filter that results 
in an equalized impulse response having zero IS1 and channel distortion. This means that convolution of 
the channel impulse response and the equalizer impulse response must equal 1 at the center tap and have 
nulls at the other sample points within the filter span. 

Two main techniques are employed to formulate the filter coefficients: automatic synthesis and adaptation. 
In automatic-synthesis methods, the equalizer typically compares a received time-domain reference signal 
to a stored copy of the undistorted training signal. By comparing the two, a time-domain error signal is 
determined that may be used to calculate the coefficient of an inverse filter. The formulation of this inverse 
filter may be accomplished strictly in the time domain, as is done in ZFE and LMS systems, which are 
examined in more detail in following sections. Other methods involve conversion of the received training 
signal to a spectral representation. A spectral inverse response can then be calculated to compensate for 
the channel response. This inverse spectrum is then converted back to a time-domain representation so that 
filter tap weights may be extracted. 

The second method of filter synthesis is adaptation. In adaptation the equalizer attempts to minimize an 
error signal based on the difference between the output of the equalizer zk and the estimate of the 

transmitted signal i,, which is generated by a decision device. In other words, the equalizer filter outputs 
a sample. The predictor or decision device determines what value was most likely transmitted. The 
adaptation logic endeavors to keep the difference between the two small. The main idea is that the receiver 
takes advantage of the knowledge of the discrete levels possible in the transmitted pulses. When the 
decision device quantizes the equalizer output, it is essentially throwing away received noise. 

The main drawback of automatic synthesis is the overhead associated with the transmission of a training 
signal, which must be at least as long as the filter tap length. Typically, training is used to converge a filter 
at startup as part of the initialization overhead. Adaptation techniques can then be employed to track and 
compensate for minor variations in channel response on the fly [I]. 



Zero-Forcing Equalization 
One computationally efficient method of forming an inverse filter is the zeroTforcing technique. To 
formulate a set of FIR inverse filter coefficients, a training signal consisting of an impulse is transmitted 
over the channel. By solving a set of simultaneous equations based on the the received sample values, a 
set of coefficients can be determined to force all but the center tap of the filtered response to 0. This means 
the N- 1 samples surrounding the center tap will not contribute ISI. The main advantage of this technique 
is that the solution to the set of equations is reduced to a simple matrix inversion. 

The major drawback of ZFE is that the channel response may often exhibit attenuation at high frequencies 
around one-half the sampling rate (the folding frequency). Since the ZFE is simply an inverse filter, it 
applies high gain to these upper frequencies, which tends to exaggerate noise. A second problem is that the 
training signal, an impulse, is inherently a low-energy signal, which results in a much lower received 
signal-to-noise ratio than could be provided by other training signal types [ l ,  41. 

Example of 7- Tap ZFE Computation 
First, create a simulated received pulse response. Begin with the equation of a sinc function, which is a 
simplification of the raised cosine pulse. Then simulate additive noise by the addition of random thermal 
noise. Finally, simulate sampling phase jitter with the random jitter term added to the time index. The 
simulated pulse response is plotted in Figure 13. The dotted trace represents the ideal noiseless channel 
response. 

Figure 13. Simulated Pulse Response 
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A vector is formed from the received samples. 2N- 1 samples are required to implement an N-tap filter. 
For the example 7-tap ZFE, you must collect 13 samples. Therefore, 13 equally spaced samples of r(t) are 
formed into the column vector V. 

Next, form a matrix, PR, from the received samples. Each row consists of seven adjacent samples in 
time-reversed order. The first element of the top row is the center tap of the pulse response. The first element 
of the second row is the sample following the center tap, etc. 



Next, compute the inverse of the channel response matrix PREQ. - 

The center column of PREQ contains the coefficients of the ZFE. 

j : = 0...6 

Cj : = PREQjS3 

-0.023 

Check the results by multiplying the coefficient vector by the row vectors of the received sample matrix. 
The dot products should result in the ideal channel response for the filter span, that is, O,0,0, 1,0,0,0. As 
shown below, the results check. 



The coefficients for the ZFE filter response are shown plotted in Figure 14. 

Figure 14. ZFE Filter Coefficient 
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Because the Japanese television broadcasters employed an impulse-like training signal, many of the first 
video deghosters for use in Japan employed ZFEs. To provide a higher signal-to-noise ratio (SNR) for the 
received training signal, these systems averaged the training signal over several training intervals. To 
further improve SNR, the U.S. broadcast industry has selected a chirp-like training signal, which has 
inherently higher energy. This signal, transmitted during the vertical blanking interval, allows suitably 
equipped receivers to automatically synthesize filters to alleviate the effects of multipath interference; that 
is, visible ghost images. 



LMS Equalization 

The least mean squared (LMS) equalizer is a more general approach to automatic synthesis. Instead of 
solving a set of N simultaneous equations as was done in the ZFE, the coefficients are gradually adjusted 
to converge to a filter that minimizes the error between the equalized signal and the stored reference. The 
filter convergence is based on approximations to a gradient calculation of the quadratic equation 
representing the mean square error. The beauty of the approach is that the only parameter to be adjusted 
is the adaptation step size a a .  Through an iterative process, all filter tap weights are adjusted during each 
sample period in the training sequence. Eventually, the filter will reach a configuration that minimizes the 
mean square error between the equalized signal and the stored reference. As might be expected, the choice 
of a a  involves a tradeoff between rapid convergence and residual steady-state error. A too-large setting 
for a a  can result in a system that converges rapidly on start-up, but then chops around the optimal 
coefficient settings at steady state. 

The LMS equalizer can also be shown to have better noise performance than the ZFE. Heuristically, the 
ZFE calculates coefficients based upon the received samples of one training signal. Since the captured data 
will always contain some noise, the calculated coefficients will be noisy - noise in / noise out. On the other 
hand, the LMS algorithm gradually adapts a filter based on many cycles of the training signal. If the noise 
is zero mean and is averaged over time, its effect will be minimized - noise integrates to 0. 

A second major benefit to this approach is that you can employ any arbitrary training sequence. In general, 
you would prefer to use a high-energy signal to improve the received signal-to-noise ratio of the training 
sequence. In contrast, the unit impulse training signal required by the ZFE is probably the lowest energy 
flat-spectrum signal possible. Typical training sequences employed for LMS equalization include 
pseudorandom noise sequences and chirp-type signals. 



Figure 15. Filter Output Computation 
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In Figure 15, the portion in the lower shaded rectangle is a standard transversal filter (FIR). The lower set 
of delays represents storage for the reference version of the training signal. Each time a sample is received, 
a new filter output is computed and compared to the corresponding reference signal, thereby forming an 
error signal. This error signal is then used to scale the received sample values contained in the filter storage 
elements. These scaled sample values are then added to the current filter coefficients to form the updated 
coefficients to be used at the next sample time. 



The coefficients are updated according to the following equation: 

As an example, consider the calculation for the third tap weight (n = 2) at time k = 5: 

This means that the C2 coefficient for the next sample period equals the current C2 coefficient minus a 
correction term. The correction term is simply the current input sample corresponding to the C2 tap 
multiplied by the current error value scaled by the adaptation rate term a. 

If the filtered sample output is much smaller than the actual value for the training signal, the error is a large 
negative value. The received sample values are scaled by this relatively large value, and the product is used 
to adjust the individual coefficients up or down (depending on the sign of the stored sample values) by a 
relatively large amount. For a smaller discrepancy between the filter output and training signal, the error 
sample and, hence, the amount of adjustment, will be smaller. The fact that each coefficient is changed by 
a different adjustment term (based on distinct received samples) allows the filter coefficients to converge 
from any initial state to one that minimizes the mean square error between the received training signal and 
the reference. 

Decision-Directed Equalization 

The previous equalizer systems are linear in that they employ linear transversal filter structures. The filters 
implement a convolution sum of a computed impulse response with the input sequence. Often with data 
communication systems, one can take advantage of prior knowledge of the transmit signal characteristics 
to deduce a more accurate representation of the transmit signal than can be afforded by the linear filter. For 
instance, a bipolar transmit signal consists of pulses with amplitudes of * 1. This signal is then pulse 
shaped, distorted by the analog channel, and filtered by a linear FIR filter. The processed signal is no longer 
a bipolar sequence. Instead, the output values span the range of values representable by the hardware, for 
example, the range of numbers specified by Q1.5 notation [ 5 ] .  It is possible to devise a decision device (a 
predictor or a slicer) that estimates what symbol value was most likely transmitted, based on the linear filter 
continuous output. For example, in the case of the bipolar sequence transmission scheme, a very simple 
decision device could replace all positive values with a positive 1 and all negative values with a negative 
1. The difference between the decision device input and output forms an error term which can then be 
minimized to adapt the filter coefficients. This is true because a perfectly adapted filter would produce the 
actual transmitted symbol values, and, therefore, the slicer error term would go to 0. In practice, the error 
is never 0, but if the adapted filter is near ideal, the decisions are perfect. In this case, the slicer is effectively 
throwing away received noise with each decision made. 

Coefficients can be updated in a manner similar to that employed by the LMS equalizer. There is, however, 
one important distinction. In Figure 16, the error term is computed as the difference between the input and 
the output of the decision device, as opposed to the LMS error term, which was based on a stored reference 
training signal. This means that the decision-directed equalizers do not require a training sequence. This 
is a major distinction between automatic synthesis (which requires a training signal) and adaptive 
techniques (which do not require a training signal). 



Figure 16. Decision-Directed Equalization 
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Decision-Feedback Equalization 

Another nonlinear adaptive equalizer should be considered: the decision feedback equalization (DFE). 
DFE is based on the principle that once you have determined the value of the current transmitted symbol, 
you can exactly remove the IS1 contribution of that symbol to future received symbols (see Figure 17). The 
nonlinear feature is again due to the decision device, which attempts to determine which symbol of a set 
of discrete levels was actually transmitted. Once the current symbol has been decided, the filter structure 
can calculate the IS1 effect it would tend to have on subsequent received symbols and compensate the input 
to the decision device for the next samples. This postcursor IS1 removal is accomplished by the use of a 
feedback filter structure. 

Figure 17. Received Signal Including Additive Noise Effects 

Figure 17 shows the received signal, including the effects of additive noise. Superimposed are the past four 
decisions (r(O), r(-I), r(-2), r(-3)) and the traces corresponding to the channel response for each pulse. 
Because you have a transverse filter that mimics the the system response, you can subtract the IS1 
contributions of the past symbols (as decided) from the next received symbol (t = 1). You can see that the 
decision values are sliced to f I, thereby tossing away noise that would have otherwise improperly 
influenced the compensation for the postcursor ISI. As shown in Figure 17, you can see that the coefficients 
of the feedback filter should converge to the right half of the channel impulse response. That is because 
the output value at any time t consists of the current sample times the center tap weight, plus the previous 
samples times the right half of the impulse response, plus the subsequent samples times the left half of the 
impulse response. It is the previous samples times the right half impulse response that will be subtracted 
by the feedback filter. 



Figure 18. DFE Functional Block Diagram 
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In Figure 18, you can see that the DFE contains all of the same functional blocks as the previously described 
decision-directed equalizer. In addition, there is a second adaptive filter structure fed by the output of the 
decision device. This second filter is the feedback stage that cancels the postcursor ISI. Its inputs are the 
symbol decisions, and the tap weights converge through the LMS process to resemble the tail of the channel 
impulse response (taps beyond the center tap). 



The adaptation formula for the feedback tap coefficients can be the same as for the feed forward section. 
For the LMS approximation [l,  41: 

b,(k + 1) = b,(k)-aegi ,-,, n = 0, l... , N -  1 (22) 

Adaptive Equalization for Digital Cellular Telephony 

The direct sequence spreading employed by CDMA (IS-95) obviates the need for a traditional equalizer. 
The TDMA systems (for example, GSM and IS-54), on the other hand, make great use of equalization to 
contend with the effects of multipath-induced fading, IS1 due to channel spreading, additive received noise, 
and channel-induced spectral distortion, etc. Because the RF channel often exhibits spectral nulls, the linear 
equalizers are not optimal due to their tendency to boost noise at the null frequencies. Of the nonlinear 
equalizers, the DFE is currently the most practical system to implement in a consumer system. As discussed 
below, there are other designs that outperform the DFE in terms of convergence or noise performance, but 
these generally come at the expense of greatly increased system complexity. Today, most TDMA phones 
employ DFE running on fixed-point DSPs such as those in the TMS320C5x [6] family. For a detailed look 
at some representative systems, consult A Low-Effort DSP Equalization Algorithm for Wideband Digital 
TDMA Mobile Radio Receivers [7] and Channel Equalizer for a Digital Mobile Telephone Using 
Narrow-Band TDMA Transmission [8]. 

Advanced Adaptive Equalizer Structures 
Several adaptation schemes and alternate filter structures offer better performance in some respects than 
those described above. Usually this performance improvement comes at the cost of increased complexity 
in terms of DSP CPU loading or logic gate count. For the most part, these are well understood algorithms 
whose system performance is still being evaluated in various applications. In any case, their treatment is 
beyond the scope of this tutorial in equalization concepts, and references are cited on page 174 for the 
interested reader. 

Lattice Filter Structures 
In general, the well-known lattice filter structure 191 can be substituted for the FIR sections in the DFE 
system. The lattice DFE has been shown to be less sensitive to roundoff errors than the transverse filter 
DFE, though it has comparable convergence properties. Special forms of LMS and RLS adaptation for 
lattice structures are summarized in Adaptive Equalization for TDMA Digital Mobile Radio [lo]. For a 
detailed discussion of the implementation of lattice DFE for digital cellular radio, refer to An Adaptive 
Lattice Decision Feedback Equalizer for Digital Cellular Radio [ l l ] .  

FILS Adaptation 
RLS adaptation refers to the recursive least squares algorithm. The RLS algorithm can be designed to 
converge significantly faster than the LMS technique converges. Recall that the LMS coefficients are 
adjusted during each sample period by the product of the current error multiplied by the appropriate signal 
sample scaled by a. In the case of RLS, the adaptation is similar, but instead of scaling the adjustment by 
a, a value derived from the inverse of the sample autocorrelation matrix is used to scale the errorlsample 
product. As a comparison of complexity, a 20-tap (10 forward, 10 feedback) LMS update system requires 
about 40 operations. A standard RLS update, on the other hand, requires on the order of 1000 operations 
[lo]. For a more detailed look at RLS in digital cellular systems, see A Decision Feedback Equalizer With 
a Frequency Offset Compensating Circuit for Digital Cellular Radio [12] and Bidirectional Equalization 
Technique for TDMA Communication Systems Over Land Mobile Radio Channels [13]. 



Probabilistic Detection Algorithms 
Two more advanced adaptation techniques that employ stochastic principles to minimize the probability 
of error are maximum a posteriori probability (MAP) and maximum likelihood sequence estimation 
(MLSE). These techniques require knowledge of the channel characteristics and the probability 
distribution of the additive noise. MAP is a symbol-by-symbol detector; whereas, the MLSE algorithm 
employs the Viterbi algorithm (VA) to minimize the probability of sequence error. Both approaches provide 
comparable performance and are still regarded as prohibitively complex for channels with a long impulse 
response, because complexity is exponentially related to the IS1 span. For a further study, consult references 
[lo] and [14]. 

Code Availability 

The associated program files are available from the Texas Instruments TMS320 Bulletin Board System 
(BBS) at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ticom. 
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Introduction 

Transmitting digital information on a radio frequency carrier is not a new concept, but it continues to attract 
attention because of the need to utilize the radio spectrum more efficiently through multiple access 
techniques that are available only with digital links. Digital signal processors (DSPs) are required by 
today's communications equipment to perform complicated algorithms in a limited amount of time. One 
such algorithm in the digital receiver is an equalizer, which is a filter that removes the distortion caused 
by the communications link between the transmitting antenna and the receiving antenna. 

This paper's two sections discuss ways to successfully implement an equalizer for the IS-54 standard on 
the fixed-point TMS320C5x. The first section gives background on the digital modulation used in the 
IS-54 and in the radio environment that should be taken into consideration when designing an IS-54 
receiver. The second section describes the design of an equalizer for the IS-54. 

Design Considerations 

Many conditions affect a system's design. The type of digital modulation and the types of distortion and 
their limits influence how the receiver is structured. 

Maximum-Effect Points 

The IS-54 standard uses 7c/4 differential quaternary phase-shift keying (DQPSK) to encode a pair of bits 
into a phase change between two points in the complex plane. The resulting phase change is called a 
symbol. The points between which the change is made are known as maximum-effect points (MEPs), 
which are recovered by the receiver. The changes between them are investigated to decode the digital 
information. 

Figure I shows the corresponding phase changes for the four dibits. The encoding process produces an 
eight-point constellation around the unit circle in the complex plane. Notice that these eight points can be 
divided into two subsets of four points. One subset is composed of the four points that are located on the 
axes of the complex plane. The other subset consists of the points that are in each of the four quadrants. 
For a given allowable phase change, if the starting point is an axis point, the end point will be a quadrant 
point. Similarly, if the starting point is a quadrant point, the end point will be an axis point. When a sequence 
of bits is encoded into a sequence of phase changes, the result is a sequence of points in the complex plane, 
which alternates between the subset of axis points and the subset of quadrant points. 



Figure 1. d 4  DQPSK 
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Multipath Interference 

When a radio signal is transmitted, it can propagate along many paths to reach the receiver. At the receiver 
antenna, the received signal can be viewed as a complex sum of vectors with independent gains and phases. 
Multipath interference is the effect of multiple versions of a transmitted signal arriving at a radio receiver 
and combining in a way that produces distortion of the original signal. Figure 2 shows how multipath 
interference is produced by reflections from buildings or other objects. 



Figure 2. Multipath Interference 

When multiple versions of the same transmitted signal arrive simultaneously, an interference pattern is 
formed with the various signals combining according to their amplitudes and phases. As the mobile 
receiver moves, the relationship between the amplitudes and phases of the signals from the various paths 
changes, causing undulations in both the composite amplitude and the composite phase. This effect is 
known as Rayleigh fading because the magnitude envelope has a Rayleigh probability distribution. Figure 
3 shows magnitude and phase plots of fading for 0.64 seconds of a signal received by a mobile unit traveling 
at 25 MPH. 

The accepted limits [2]  on the amount of gain and attenuation provided by fading are +10 dB and -30 dB, 
respectively. Statistically, there is a 0.01 % probability that the faded signal will be above 10 dB and a 99.9% 
probability that it will be above -30 dB. 



Figure 3. Rayleigh Fading 
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Intersymbol Interference 

Occasionally, the arrival of some signals can be significantly delayed. This situation can result in 
intersymbol interference (ISI). In other words, the received signal components of previous symbols smear 
into later ones, thus producing distortion. In small cells, the propagation times of the different paths are 
nearly equal, so intersymbol interference due to multiple paths is minimal. However, in large cells, the 
intersymbol interference due to multiple paths can be significant. The difference in time (or symbols) 
between two rays' arrivals is called the delay spread of the channel. 

Another cause of IS1 is simply the bandlimited nature of the communications channel. A bandlimited 
channel disperses pulses going through it. This is a result of the nonideal amplitude and phase 
characteristics of the communications channel. 

Severe IS1 from one or multiple sources can render the received signal unrecoverable. For situations in 
which IS1 is a problem, you can use an adaptive filter called an equalizer to compensate. The channel 
characteristics change considerably over the slot length of the IS-54 system; thus, adaptation of the 
equalizer coefficients is required, and the adaptive equalizer's taps must change while it is filtering the data 
sequence. 

IS-54 defines the limit for the amount of IS1 that must be compensated for by an equalizer. The IS-54 
channel model was chosen to consist of a faded main ray and an independently faded delayed ray. The limit 
on the amount of delay is one symbol time (41.17 ps). The delayed ray can also be of equal nominal 
magnitude to the main ray. Figure 4 shows the effect of IS1 on the n14 DQPSK constellation. with the 
delayed ray three dB below the main ray. 



Figure 4. lntersymbol Interference: Interferer Level -3 dBc 
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Equalizer Design 

Set Data 12 dB Below Full Scale 

Figure 3 shows that Rayleigh fading can cause the magnitude of the data to be amplified by 10 dB. To 
prevent the sampled representations of the I and Q baseband signals from clipping, the nominal point (0 
dB) should be kept at least 10 dB below full scale. For sampled signals, the amount of dynamic range 
represented by each bit is 6 dB. A convenient figure to work with for a fade margin is 12 dB, which 
corresponds to 2 bits in sampled form. 



Software AGC 

To maintain maximum resolution in the presence of fading, some mechanism is required to keep the 
nominal value of the data at 12 dB below full scale. An RF section may contain an automatic gain control 
(AGC) circuit that prevents strong signals from overloading the receiver and boosts weak signals for better 
recovery. However, building an AGC with a large amount of dynamic range (-30 to -1 15 dBm) can be 
an issue. An alternative to a full-dynamic range hardware AGC is a combination of hardware to attenuate 
the large signals and software to boost signals below the desired nominal value. 

An algorithm for the software AGC can be based on signal strength measurements of the incoming data. 
Often, the software must perform measurements for reporting the received signal strength indication 
(RSSI) of the cell to the cellular system. The software AGC could use the RSSI directly or in some 
derivative form, but a single measurement would look like: 

and the RSSI value would be the weighted average of individual measurements: 

RSSI ,,, ( n )  = Am ( n )  + ( 1  -A) RSSI ,, ( n-  1 ) 

where h is an exponential weighting factor that is less than 1. The final RSSI report would include the 
amount of attenuation provided by the hardware AGC portion, which could simply be a resistive pad 
switched in to prevent overloading the AIDS. RSSI,,(n) represents the software scale factor. Ideally 

where 12 dB is the fade margin discussed above. So the scale factor will be 

An assembly language example is included in the source code. See the Code Availability section on page 187. 

Equalization and Estimating Maximum-Effect Points 

To recover the maximum-effect points in the presence of ISI, an adaptive equalizer is used in mobile 
stations that are compatible with IS-54. The equalizer inverts the distortion of the communications 
channel. Amplitude and phase distortion from fading is compensated, and components of previous 
symbols are removed. Figure 5 shows a block diagram of a decision-feedback equalizer (DFE). The 
received data is square-root raised cosine (SRC) filtered and fed into a feed-forward filter section. In this 
example, the feed-forward filter is a linear transversal equalizer (LTE) composed of three taps that are 
spaced at 112 symbol, or Tl2. It is well-known [5] that equalizers with taps spaced in fractions of a symbol 
perform better than those with taps spaced at the symbol interval. Three taps spaced at TI2 provide the 
capability to compensate for up to one symbol of ISI, which is the upper limit specified in IS-54. The 
feedback filter contains a single adaptive tap. Previous decisions are filtered by the feedback filter and 
subtracted from the output of the feed-forward filter. This result is the estimated maximum-effect point 
at time k. The estimate is then fed into a data slicer, which decides which maximum-effect point is being 
estimated on the basis of its phase. The error vector is the difference between the estimate and the decision 
and drives the filter tap adaptation. 

The slicer makes its decision on the basis of the phase of the estimate. Recall that there are two subsets 
of maximum-effect points that the encoded sequence alternates between in n14 DQPSK. In both subsets, 
the points are offset by 90 degrees. In the case of the subset of quadrant points, the decision regions are 



trivial: determine which quadrant the estimate is in from the signs of the real and imaginary components 
of the estimate. In the case of the subset of axis points, the decision region boundaries are at odd multiples 
of n/4 in phase. However, if the estimates for the subset of axis points were rotated by n/4 in phase, the 
decision regions would be the quadrants of the complex plane. In Figure 5, there are two paths into and 
out of the slicer. The upper path is for the estimates of axis points, and the lower path is for the estimates 
of quadrant points. 

For the equalizer to be able to track changes in the communications channel, it must first be trained to the 
channel's characteristics. At the beginning of every TDMA slot received by the mobile unit is a 14-symbol, 
15-maximum-effect point synchronization word. The mobile unit uses this known sequence of phase 
changes to synchronize its receiver to the base station's transmitter. When an arbitrary starting point on 
the unit circle is chosen, this known sequence of phase changes can be encoded into a sequence of 
maximum-effect points and stored in the memory of the DSP. The stored MEPs drive the error, and the 
equalizer taps converge to a state in which the error is minimized; thus, the equalizer adapts to the channel's 
characteristics. The equalizer compensates for the phase difference, which can be completely arbitrary, 
between the stored MEP sequence and the received one. The taps take on whatever values are required to 
produce estimates of the stored MEPs. 

Figure 5. Block Diagram of a Decision-Feedback Equalizer 

The 'C5x is a fixed-point machine; to prevent the equalizer taps from exceeding 1 .O, it is necessary to scale 
the decision points. Since the equalizer taps adapt to the inverse of the channel, an amplification by the 
equalizer tap compensates for attenuation of the signal. This is illustrated in Figure 6. Since fading can 
attenuate the received signal by 30 dB from its nominal value, the same amount of amplification could be 
applied by the equalizer. The desired magnitude for I and Q is 0.25, which is 12 dB below full scale. This 
is also the value of the decision used in the feedback path in Figure 5. The decision points must be scaled 
by another 30 dB (42 dB altogether). It was verified by simulation that an attenuation of the signal by 30 
dB (corresponding to a constant 30-dB fade) produced a main tap magnitude equal to 1.0 when the decision 
points were scaled by 42 dB. 
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Figure 6. Equalizer Taps Responding to a Fade 
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Choosing an Update Algorithm 

To track the changing communications channel, the adaptive equalizer uses an algorithm that updates the 
taps according to the error signal. Because of the requirement for tracking a fast-fading channel in a 
fixed-point implementation, the update algorithm should be chosen carefully. 

Table 1 compares the best possible candidates. Using Table 6.8.5 in [I], a complexity comparison can be 
made for an equalizer with N 1 = 3 feed-forward taps and N2 = 1 feedback tap. Assuming 4 DSP operations 
for a complex multiply and 40 DSP operations for a complex divide provides a comparative figure for the 
number of DSP operations required for each algorithm. These DSP operations are in the parentheses in 
the middle two columns of the table. 

Table 1. Complexity Comparison of Update Algorithms 

LMS 

Fast Kalman 

Conventional Kalman 

Square-Root Kalman 

Gradient Lattice 

RLS Lattice 

Number of 
Complex 

Operations 

9 

85 

58 

50 

30 

54 

Number of 
DSP 

Operations 

36 

448 

304 

344 

336 

432 

Number of 
Complex 
Divisions 

0 (0) 

3 (120) 

2 (80) 

4 (160) 

6 (240) 

6 (240) 

Number of 
Complex 

Multiplications 

9 (36) 

82 (328) 

56 (224) 

46 (1 84) 

24 (96) 

48 (192) 



Of the six choices, one must be disqualified, and one will be disqualified. The LMS algorithm, although 
overwhelmingly simpler than the others, has insufficient convergence properties (tracking ability) for the 
types of channels that must be dealt with. It was included to show that the price to be paid for enough 
convergence is an order-of-magnitude increase in complexity. The conventional Kalman is known to have 
stability issues [I] and therefore should be used with caution -especially in a fixed-point implementation. 
For this discussion it is disqualified, as well. Of the remaining four candidates, two are clearly more 
complex for the desired number of taps, so the final choice is between the square-root Kalman and the 
gradient lattice. According to [I], the gradient lattice is a suboptimum derivative of the RLS lattice with 
reduced complexity and processing requirements. The square-root Kalman, however, maintains the 
optimal convergence properties of the conventional Kalman but uses a more stable method for updating 
the Kalman gain vector. It seems worthwhile to choose a slightly more complex algorithm that has 
significantly better convergence properties. 

The list of algorithms in Table 1 is by no means comprehensive. There is a multitude of algorithms to choose 
from. This discussion considers only a few well-known and proven options. 

Code Availability 

The associated program files are available from the Texas Instruments TMS320 Bulletin Board System 
(BBS) at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com. 
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Introduction 

This voice echo canceler implementation on the TMS320C5x is based on a similar implementation on the 
TMS320C2x [I]. This application report outlines the differences between the two implementations and 
highlights the specific 'C5x features that support an efficient echo canceler implementation. 

This application report extends the 'C2x report with a description of the 'C5x implementation of the 
algorithm. It is highly recommended that you read both reports to get complete details on the theory and 
the algorithm used for adaptive filtering and echo cancellation. Although the basic algorithm is the same, 
the 'C5x implementation is considerably different from that of the 'C2x to take advantage of the 'C5x 
architecture. These performance improvement techniques are discussed in detail in this application report. 

The hardware platform used for testing the 'C5x echo canceler software consists of a 'C5x software 
development system (SWDS) and an analog front end (AFE) board. The SWDS is a plug-in IBM PC AT 
card, which is used to debug and run 'C5x code in real time. It has all the necessary hardware hooks to allow 
an efficient message-passing scheme between the 'C5x and the host PC. The AFE board acts as an analog 
interface to the 'C5x SWDS. It is made up of two codecs, two telephone hybrid transformers, and clock 
generation logic for the near-end and the far-end line interfaces. 

Although the software is designed to run on an SWDS-AFE platform, very little modification is required 
to adapt the program to a different target board1. The current implementation simulates the following 
functions in software: 

Near-end round-trip delay 
Far-end round-trip delay 
Near-end echo generation 

The near-end round-trip delay directly affects the performance of the echo canceler. This is the time delay 
of the tail circuit (see Table 3 for details) and is simulated in software in order to analyze the echo canceler 
performance. The far-end round trip delay is the delay of the forward circuit. The echo generation is 
implemented in software. 

In addition to these simulations, a message-passing scheme is supported by the 'C5x to interface to the host 
PC via the SWDS hardware. This allows you to monitor the echo canceler performance in real time. 

These features are provided to fine-tune the software performance according to each applications 
requirement. They can be turned off by using software switches (see Table 1 on page 197) during assembly 
time. 

'C5x Device Features Used in This Implementation 

The 'C5x architecture is based on the industry-standard TMS320C25 architecture. The 'C5x assembly 
language is a superset of the TMS320C25 assembly language. However, the 'C5x has an enhanced 
pipelined architecture that allows it to execute instructions at 50 ns or 25 ns - more than twice the speed 
of the 'C2x. In addition, the 'C5x has a more powerful set of instructions that allows highly efficient 
algorithm implementation. Many of these enhanced features are used in this echo canceler implementation. 

The rest of this section highlights various features of the 'C5x architecture that distinguish it from the 'C2x 
family. All code examples are taken from the echo canceler software, but the general comments are equally 
applicable to any DSP algorithm. 

1 Editor's note: This may be necessary since the 'C5x SWDS is no longer available from Texas Instruments Incorporated. An 
alternative development platform is the 'C5x evaluation module (EVM). 



Dual Mapping of On-Chip Memory 
The 'C5x has 1056 words of on-chip dual-access memory, 5 12 words more than the 'C25. While this type 
of memory is more efficient to use, it is expensive in terms of silicon real estate. Another type of on-chip 
memory available on 'C5x devices is single-access memory. The 'C53 and 'C51 have 3KllK words of 
single-access memory, while the 'C50 has 8K words. This memory block can be mapped simultaneously 
in program and data spaces. This dual-mapping feature is very useful for adaptive FIR filters, such as the 
echo path transversal filter. The multiply/accumulate loops require FIR coefficients in the program space, 
but the same coefficient table is also accessed in data space to update the transversal filter coefficients. 
Placing this coefficient table in single-access memory and utilizing its dual-mapping feature make the 
transversal filter implementation more efficient. Note that the data-move operation (DMOV instruction) 
works on the single-access RAM (SARAM) block, as well. 

Zero-Overhead Loops 
The 'C5x features zero-overhead loops, as opposed to the 3-cycle overhead of the 'C25 BANZ (branch on 
AR not zero) loops. This makes 'C5x looped code as efficient as inline implementation. The code in 
Example 1 illustrates the use of block repeats in the filter taps update algorithm: 

Example 1. Zero-Overhead Loops UPDATE.ASM 
- - 

lac1 num-a-iter-2 
s amm brcr ;no. of iterations 
rptb $block-end-1 

lacc *, 16, arl ;start of loop 
mpya *+,ar2 
sach *0- ;end of loop 

$block-end: 

In the 'C25 implementation, the same algorithm was coded inline. 

Dynamic Addressing of Coefficient Tables 
The multiply/accumulate instruction (MAC) on 'C25/'C5x devices fetches input samples of an FIR filter 
from data memory and takes the filter coefficients from the program memory. This achieves single-cycle, 
multiply/accumulate operation by simultaneously fetching two operands from memory. Most 'C25/'C5x 
FIR computations are carried out this way. On the 'C25, the coefficient table address can be specified only 
in the direct addressing mode. This is adequate for most applications, except where the coefficient table 
address is determined in runtime. For such cases, the 'C5x provides a register-indirect mode of addressing 
on multiply/accumulate operations. 

Example 2. Echo Estimation Routine FIR.ASM 

lac1 last-a ;update coefficient 
s amm bmar ; table address 
lacc one, 14 
2 Pr ;clear preg 
rPt num-a-l ; repeat 

madd *- ;multiply/accumulate 
apac ;last product 
sach est-echo,l ;save echo estimate 

This feature is used in the echo estimation routine, as shown in Example 2. The block-move-address 
register (BMAR), a dedicated CPU register, points to the location of the coefficient table in program 



memory. This feature is useful when code reuse is a consideration. For the code shown in Example 2, it 
is particularly important because the length and the location of the transversal filter coefficients are 
determined in runtime. 

Use of Nested Loops 

Complex applications like voice echo cancellation often need nested loops. For instance, the block update 
algorithm for echo filter taps requires two nested loops: an inner loop to compute a time-averaged 
correlation error for each coefficient in the block and an outer loop to update the coefficient. This can easily 
be accomplished on the 'C5x by nesting a single-instruction repeat (RPT) inside the block-repeat (RPTB) 
loop. 

Example 3. Coefficient Update Routine TAPINC.ASM 

It cunO ; 
lar ar2, #incO 
rptb Scale-INCs-1 :outer loop 

lacc one, 15 
mPY *+ 
rPt #14 ;inner loop 

mac punO+l, *+ ;compute error 
mar * , ar2 
lta cunO 
sach *+,O,arl ;save coeff update 

$talc-INCs: 

When a single-instruction repeat (RPT) loop cannot be used, block-repeat loops can be nested with 
delayed-branch loops such as branch-on-AR-not-zero-delayed (BANZD). Up to eight such BANZD loops 
can be nested, each using an auxiliary register as the loop counter. In '(22.5 implementation, the same 
algorithm is coded in-line. 

MaximaIMinima Search 

The 'C5x features special instructions to efficiently find minimum (or maximum) value in a data array. 
Each element in the array can be 32 or fewer bits wide. A signed comparison is made between the 
accumulator and the accumulator buffer, and the smaller (or greater) of the two values updates the 
accumulator buffer. This feature is advantageous in the near-end speech detection algorithm. 

Example 4. Near-End Speech Detection Routine NESPDET.ASM 

lac1 num-m-1 ; 
samm brcr ;repeat count 
z aP 
sacb ;initialize accb for search 
rptb $max 

lacc *-, O,ar2 ;get partial maxima M(k)'s 
sac1 *-,O,arl 
crgt ;save largest M(k) in accb 

$max : 
sac1 max-m ;largest M(k) -> max-m 



The code loop shown in Example 4 performs two functions: 

It finds the largest far-end speech sample (or its power estimate) from a set of the num-m most 
recent samples. 

It implements a time window spanning the echo path delay range. 

On the TMS320C2x, the same algorithm must be implemented with conditional branches. The built-in 
'C5x support for search algorithms generates faster and more elegant code. 

Circular Buffers 

Another 'C5x advantage over the 'C2x is its support for circular addressing. Two independent circular 
buffers of any size are supported by the 'C5x address generation unit. They can be used to implement FIFO 
buffers and queues. In this echo canceler application, the two circular buffers are used to hold far-end and 
near-end receive samples and implement variable delay for near-to-far and far-to-near signal paths. 

Another important use of circular addressing is in FIR filter implementations. The conventional way of 
performing FIR computation on 'C2x/'C5x devices is via a multiply/accumulate with data-move (MACD) 
operation. In the case of a 'C5x, circular addressing can replace a data-move operation to update filter taps. 
This is a faster implementation if the filter taps reside in the on-chip single-access memory or the external 
data memory. The echo simulation filter employs this technique, as shown in Example 5. 

Example 5. Echo Simulation Filter EFILT.ASM 

mar *, ar5 ; 
lar ar5,efilt-ptr ;get echo filter taps address 
= aP 
rPt #(filt-len-1) ;multiply/accumulate 

mac echo-filt-end,*+ ; with circular addressing 
apac ;add final product 
add one, 14 ;round output 
sach sim-echo-out,l ;save as Q15 result 

Delayed Branches and Conditional Execution 

The 'C2x has a three-deep instruction pipeline. This allows it to perform more operations in parallel by 
overlapping various phases of instructions. The 'C5x features a four-deep instruction pipeline to attain even 
higher performance. Since deeper pipelines take more cycles to flush, the 'C5x supports special types of 
branches and calls to avoid this overhead. Normal 'C5x branches take four machine cycles, while a similar 
instruction on a 'C2x takes only three cycles. However, all 'C5x instructions that cause a pipeline flush 
support a delayed option that reduces the overhead to only two machine cycles. Moreover, in the special 
case in which only one or two instructions are skipped over, you can use an even faster instruction, XC 
(conditional execute), which takes only one machine cycle. 



The code shown in Example 6 illustrates the use of delayed branches and conditional execute instructions. 

Example 6. Use of Delayed Branches NESPDET.ASM 

bd Schk-hang ;delayed branch 
sacl max-m 
lacc absyOf ;branch executes here 

sub maxm 
lar ar1,last-m-l 
xc 21gt ;if acc<=O then skip next two 

lacc absyOf ; instructions 
sacl max-m 

lacc num-m- 1 
s amm brcr 

Barrel Shifters 

Both the 'C2x and 'C5x DSP families support a 16-bit input prescalar and an 8-bit output postscalar in 
hardware. This is necessary for efficient fractional arithmetic and bit manipulation. In addition to these 
barrel-shifters at the input and output paths, the 'C5x family also features a 16-bit right barrel shifter on 
the accumulator. This complements left barrel shifting provided by the input prescalar. The code in 
Example 7 illustrates the use of barrel shifters. 

Example 7. Code Excerpt From MULAW.ASM 

lact temp-B2 ;Shift left biased linear into ACC 
bsar 16 ;Shift right ACC by 16 
add #OEOh 
sub tregl14 ;Shift left by 4 and subtract 

The lact instruction uses the left barrel shifter to transfer data to the accumulator, and the input shift is 
determined by the tregl register. The following instruction, bsar, performs a 16-bit right barrel shift on the 
accumulator contents. 

Memory-Mapped Registers 

Both the 'C2x and the 'C5x have accumulator-based internal architecture. In 'C2x devices, all arithmetic 
operations are performed on the accumulator. There is no data path between the accumulator and other CPU 
registers, including the auxiliary register set. Therefore, a temporary data memory location must be used 
to transfer data between the arithmetic logic unit (ALU) and the address generation unit (AGU). 

The 'C5x architecture is considerably enhanced; it provides a direct data path between the accumulator and 
the rest of the CPU registers by mapping them into local data memory. It also supports direct 
memory-to-register data transfer on all its internal registers. The code in Example 8 illustrates the use of 
'C5x memory-mapped registers. 



Example 8. Taps Update Routine UPDATE. ASM 

update taps: 
splk #16, indx ;init. index register 
lar ARl,#INCO ;init. aux register 1 
lacc ADA0 
sub H 
sac1 ar 2 ;init. aux register 2 
lacc beta-gain ;get variable beta-gain factor 
s amm tregl ;init. temp register 1 
lac1 num-a-2 
s amm brcr ;init. repeat count 
lact I ABSY 
s amm tregO ;init. temp register 2 
mPY *+,ar2 
rptb $block-end-1 

lacc *, 16, arl 
mpya *+,ar2 
sach *0- 

$block-end 

Parallel Logic Unit 

The 'C5x bit manipulation unit runs independently from its arithmetic logic unit. It allows logical 
operations on any on-chip or off-chip memory location (including memory-mapped registers) without 
modifying the accumulator (ACC) or accumulator buffer (ACCB). This feature, in conjunction with the 
memory mapping of the CPU registers, provides 'C5x programmers more flexibility to modify auxiliary 
registers to implement software queues and FIFOs. Additionally, the read-modify-write operation 
performed by the parallel logic unit (PLU) instructions may also be used for semaphore update. The section 
of code in Example 9 is taken from the echo canceler program. It services the serial port receive interrupt 
by reading the received data, transmitting new data and setting appropriate flags to communicate with the 
background program. Notice in particular the use of PLU instructions for setting software flags. 

Example 9. Serial Port ISR ECHOISR.ASM 

rint-isr: 
ldp #DRR-data 
smmr drr,#DRR-data ;get serial receive data 
lmmr drr,#DXR-data ;send serial transmit data 
opl #RXDATA,sp-flag ;mark serial data received 
apl #TXDATA,sp flag ;mark serial port data sent 
opl #ERINT,intr-flag ;mark rint in intr-flag 
reti 

Code and Data Requirement 

The echo canceler software implementation gives you maximum control over its performance and 
behavior. Various system parameters, such as the echo filter length, echo cancellation enableldisable mode, 
and filter adaption enableldisable mode, are represented by memory variables rather than by hard-coding 
in software. This lets you either: 

Modify these parameters in realtime by the use of supervisory software, as illustrated in the 
SWDS demo program, or 

Set up these parameters in the initialization stage. 



Table 1 lists these user-defined system parameters along with their default values. To modify the default 
value parameters, edit the echoequ.inc file. 

Table 1. User-Defined System Parameters 

The control-flags variable is active only when host-comm is set to 1. Edit the echoinit.asm file to modify this memory 
variable. 

Number 

1 

2 

3 

4 

5 

Variable Name 

pd-wait 

echo-taps 

sim-echo 

host-comm 

controlflagst 

Description 

Programldata wait states 

Transversal echo filter taps 

Simulated echo disabletenable 

Host PC communications disablelenable 

Bit 0: echo cancellation disablelenable 
Bit 1 : residual suppression disablelenable 
Bit 2: coeff adaptation disablelenable 

Type 

const 

const 

const 

const 

variable 

Default [range] 

Oh 

512 116-51 21 

1 [OII ] 

1 [Oll] 

1 [Oll] 
1 [0/1] 
1 [0/1] 



Table 2 indicates the processor loading and the code size of each software module for a 512-tap 
implementation. It also indicates where each module is located in program memory. Most of the 
time-critical subroutines are located in the on-chip single-access random-access memory (SARAM). The 
auxiliary functions, such as the host PC mailbox, are executed from external memory. 

Table 2. Program Module Requirements 

t Only for the modules that are in the main cycle. Cycle count given for 512 taps transversal echo filter. 
$ ROM = 'C51 on-chip, read-only memory or external memory. 

SARAM = 'C51 on-chip, single-access RAM. 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Data Allocation 

The 'C5 1 has 1056 words of dual-access and 1024 words of single-access on-chip memory. It also has 8K 
words of on-chip, read-only memory. The on-chip data memory is allocated to various modules of the echo 
canceler software according to their specific requirements. Table 3 lists the size and the location of various 
data variables for a 5 12-tap implementation. 

Module 
Name 

ECHO.ASM 

ECHOINIT.ASM 

ECHOISR.ASM 

CYCLE.ASM 

EFILT.ASM 

FIR.ASM 

RESID.ASM 

MULAW.ASM 

PCALC.ASM 

NESPDET.ASM 

0NORM.ASM 

TAPINC.ASM 

UPDATE.ASM 

UTIL.ASM 

MAILBOX.ASM 

The coefficients of the echo transversal filter are placed in the on-chip, single-access memory because of 
its dual-mapping capability. Note that these coefficients are accessed in both program and data spaces by 
two different modules. 

The 1024 words of dual-access memory are used for data storage. Reference samples of the far-end talker 
reside in this memory block. This makes efficient use of multiply-accumulate-with-data-move-type 
operations. 

Description 

Main module - variable declarations. 

Initialization module. 

Interrupt services routines. 

Get new samples. Convert p-law 
to linear. Poll host PC mailbox. 

AR for the echo simulation. Update 
delay buffers. 

Estimate echo. Compute error. 

Residual error suppressor. 

Linear-to-PCM conversion. 

Power estimate of y(n) and o(n). 

Near-end speech detection. 

Output normalization for 
coefficient update. 

Tap increment. 

FIR filter tap update. 

Process host PC commands. 
Write monitored variables. 

Host PC mailbox. 

CPU 
Cyclest 

- 
- 

17 

67 

50 

546 

17 

41 

39 

47 

55 

791 

153 

- 

- 
Total cycles 
for 51 2-tap 
filter = 1825 

Code Size 

2 

218 

56 

7 1 

21 

21 

16 

28 

19 

83 

32 

32 

27 

233 

41 

Total code 
size = 900 

words 

Code 
Location* 

ROM 

ROM 

ROM 

SARAM 

SARAM 

SARAM 

SARAM 

SARAM 

SARAM 

SARAM 

ROM 

ROM 

ROM 

ROM 

ROM 



To simulate delay paths between near-end and far-end speakers, two long buffers of 2K words each are 
maintained in external data memory. Another buffer that holds host PC messages resides in external 
memory. Since all three buffers are in noncritical paths and would eventually be deleted from the final 
implementation, they are placed in external memory. 

Table 3. 512-Tap Implementation Data Variables 

On-Chip Single-Access Memory: 528 Words 

16 words Normalized outputs UnO - Un15 

51 2 words Transversal echo filter coefficients A0 - A1 5 

On-Chip Dual-Access Memory: 655 Words 

62 words System variables 

33 words Local maxima M(k) for near-end speech detection 

32 words Coefficient increment INC(k) 

528 words Reference samples Y(k) 

External Data Memory 

2304 words Near-to-far sample delay buffer (optional) 

2304 words Far-to-near sample delay buffer (optional) 

2048 words Message buffer for PC communications (optional) 



Code Benchmarks 

The two most computationally intensive routines of this echo canceler application are: 

The transversal echo filter routine FIR.ASM, and 
The mean square error (MSE) computation routine TAPINC. ASM. 

The computational requirement for these two routines depends on the length of the echo transversal filter. 

Table 4 shows the relationship between the processor loading and the length of the transversal filter. For 
a 512-tap filter, the 'C5x takes only 92 microseconds to process each sample. With an input sampling rate 
of 128 microseconds, this leaves the processor with ample time for system overhead. In fact, a 50-ns 'C5x 
processor can implement about 750 echo filter taps within a 128-microsecond sampling period. In other 
words, one 50-ns 'C5x DSP can handle 96 ms of the tail-end circuit delay. 

Table 4 shows code benchmarks for a hardware platform that consists of the 'C5 1 software development 
system (SWDS) with an analog front end (AFE) board, a zero-wait-state external datalprogram memory, 
a 50-ns instruction cycle rate, a 128-ys input sampling period, and PC communication disabled. 

Table 4. Code Benchmarks 

Echo Canceler Demonstration on a 'C5x SWDS 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

The primary hardware platform for testing the 'C5x echo canceler software (for code benchmarks) was a 
'C5x SWDS. The AFE board communicates with the 'C5x DSP via its serial port and has codecs and hybrid 
transformers for near-end and far-end telephone interfaces. An AFE board schematic is shown in the 
appendix of this report. 

You can run the demonstration software on any 'C5x SWDS board by downloading the echo.out file to the 
board and running the echodemo.exe file on the host PC. To do this, type the following two commands at 
the DOS prompt: 

Echo Filter Taps 

32 

48 

64 

80 

96 

128 

256 

51 2 

Time Required to Process One Sample 

26.0 ps 

28.1 ps 

30.0 ks 

32.4 ~s 

34.6 ps 

38.9 ps 

56.7 ps 

91.6 ps 



You can control the various system parameters - such as tail-circuit delay, transversal filter taps, echo 
cancellation mode, and adaptation mode - in real time by running the echodemo.exe program. 

Conclusion 

This implementation of a single-channel voice echo canceler on a TMS320C5 1 highlights the powerful and 
versatile architecture of that DSP. This particular algorithm was first coded on a TMS32020. Coding the 
same algorithm on a TMS320C5 1 shows that the resulting performance improvement is not merely due 
to the faster instruction rate on the 'C5x. Performance is improved by more than a factor of two when 
enhanced 'C5x architecture is fully utilized. The 'C5x features used in this implementation are discussed 
in detail. The processor loading and the code and data size of each software module are listed. Several 
auxiliary functions that are used for testing and evaluation purposes are discussed. The details of a 
demonstration package that consists of a 'C5 1 SWDS, an analog front-end board, a 'C5x DSP, and PC 
software are given. 
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Appendix: Schematic of the Dual-Telephone Interface 
for the TMS320C51 SWDS 

T I  U 1  29C16 

+5 V- 
IPDN CLK 

TMS320C5x 
Serial Port 

- 5v + - 

Far-End Circuit 

I 1 1 NOTE: TI-T2 Transformer Specifications 

Codec Frame Generator 1. Dual primary, center-tapped secondary 

2. Primary inductance = 1 .l HO 1 kHz. 65 mA 
3. Saturation current > 70 mA 
4. 1 : 1 : 1 : 1 tums ratio 
5. Average w~nding resistance = 62.5 R 
6. Primary winding resistances should match within 
7. Wind 112 secondary first; tape, then wind prima5 

bifilar; tape, then wind rest of secondary. 
8. Coefficient of coupling (K) >= 0.998 
9. Pri-to-pri and pri-to-sec Hipot = 500 V 

(This is a singlecoil, hybrid transformer.) 

DNA Enterprises. Inc. 
Dual-Telephone Interface for the TMS320C5 1 SWDS 
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Introduction 

The market for pen-based computers is growing. Pen-based computers include notebook-sized tablets, 
pocket organizers, and handheld computers (HHC). Most pen-based computers offer handprinted 
character recognition (HCR), and some are beginning to offer cursive handwriting recognition. Most 
implementations of pen-based computers with HCR suffer from slow response times and inaccurate 
recognition. The HCR algorithm is typically implemented on the CPU of the pen-based computer. 

This report describes how to implement HCR for real-time applications. Such applications are found in 
a variety of industries, including financial trading, healthcare, and transportation. 

Users of handheld computers require fast response and high accuracy recognition rates. To meet these 
requirements, the execution of HCR tasks in a handheld computer is shared among a pen-input processor, 
a TMS320C5x digital signal processor (DSP) residing on a Q p e  I1 PCMCIA-compatible card, and the 
main CPU. The input processor digitizes and filters handprinted input written on a resistive pad. The DSP 
manages pen-stroke and character libraries. The DSP performs character-based matching by using these 
libraries and digitized strokes provided in real-time by the input processor. The DSPprovides the character 
string with the best match to the input data, along with a set of possible alternatives, to the main CPU. In 
addition, the DSP can handle high-level verification of character recognition, such as constraining the 
matching to a dictionary of valid character string inputs. The main CPU handles inking of data to the LCD, 
establishing a recognition context, and communicating pen-stroke data to the DSP. 

The prototype HHC platform described in this paper was developed in conjunction with Commodity 
Exchange, Inc. of New York (COMEX) as a means for traders and brokers to input trades to the exchange 
and electronically receive price and trade order information. The HHC platform system can also be used 
in other industries that require communicating with pen-input computers and wireless LANs. 

The current implementation of HCR is integral to the HHC and runs on an MC68000 processor, along with 
other system and application software. This paper shows how a PCMCIA card containing static memory 
and a general-purpose DSP can be used to implement HCR in a multiprocessor setting. A Qpe I1 
PCMCIA-compatible card containing a TMS320C5x DSP and 25613 bytes of SRAM (referred to as a 
DSP/memory card or DSP card) is under development by the Texas Instruments Semiconductor Division 
[ 1,2,3]. The architectural and functional aspects of this card that are relevant to the implementation of HCR 
are discussed. 



Architecture 

The prototype HHC is shown in Figure 1. The processors and I/O devices for implementing HCR are 
described in the following paragraphs. 

Figure 1. Prototype HHC Platform With Pen lnput 

Host Processor 
The MC68302 is the main processor used in the HHC. The 68302 is an integrated multiprotocol processor 
consisting of an MC68000 core, a system integration block (SIB j, and a communications processor (CP). 
The CP is connected to the core through the SIB, not the data bus, and can operate independently of the 
core. This feature allows multiple tasks to be implemented in hardware, providing increased system speed 
and better power management. The 68302 has the ability to put the core and the CP to sleep independently, 
allowing large power savings. The return to a normal operating state is very quick and undetectable by the 
user. The MC68000 core is referred to as the hnstprocessol: 

lnput Processor 
Any standard ball-point pen, pencil, or stylus can be used to enter handprinted input and signatures onto 
a resistive, opaque X-Y digitizing pad, located between the LCD and the elastomeric keyboard. An Intel 
8051-like Signetics S87C552 microprocessor performs input preprocessing and provides low power 



modes of operation used in power management. This processor is awakened through hardware whenever 
a key is pressed, the discrete matrix touchscreen is touched, the digitizing pad is touched, or data is received 
over its serial line from the host processor. The firmware drives the AID circuitry, which biases the 
digitizing pad and gets X-Y and touch-detect readings. Higher level software averages the X-Y points and 
reports the filtered strokes (a pen down, followed by a stream of points, followed by a pen up) over the serial 
line to the host processor for recognition or for signature compression. As information is sent to the main 
processor for recognition andlor storage, it is presented, or inked, on the LCD to provide feedback to the 
user. Key presses and touchscreen touches are reported similarly. 

DSPIMemory Card 
The DSPImemory card can be used either as standard memory or as a multifunction peripheral device. The 
HCR (and other) DSP algorithms can be loaded into the card by a host processor in the same way it writes 
to any PCMCIA memory. Once the program is loaded, the host can command the DSP to execute the 
algorithm as a CP. Among the key features of the DSPImemory card used in this implementation of HCR 
are on-board logic to arbitrate the memory bus between the DSP and the host, direct interrupt control and 
handshake between the host and DSP, and host control of DSP operating speeds for power management. 

System-Level Software 

A real-time operating system (RTOS) with facilities for multitasking and interprocess communications 
runs on the host. The application program interface (API) implements the application programmers' view 
of the operating system. Included in this interface are functions to accept input from the keyboard, the touch 
screen, the digitizing pad, or the communications system. Also included are functions to output data to the 
liquid crystal display (LCD), to handle communications, to access RAM, and to access the PCMCIA- 
compatible card. 

The input subsystem routines allow application programmers to manage the input queue that records user 
inputs from the touch screen, keyboard, and HCR subsystem. The modularity of the HCR subsystem makes 
porting it to the DSPImemory card straightforward. Initialization routines for the HCR subsystem are 
available from within applications. Communication of recognition parameters between applications and 
the HCR subsystem occurs through APIs that manipulate the recognition context, which is composed of 
inking parameters, active model databases, active gesture sets, and active constraint dictionaries. The 
HCR subsystem is activated asynchronously when serial data from the digitization subsystem is received. 
After processing the digitizer data, the HCR subsystem sends a notification to the application (similar to 
those sent for keyboard and touch screen events) that the recognition results are awaiting processing. The 
application is then responsible for invoking final translation and constraint of the recognition result through 
function calls to the HCR subsystem running on the DSPImemory card. 

To conserve power when the HHC is not in use, it can be placed, under software control, into one of two 
sleep modes: shallow sleep or deep sleep. In the shallow sleep mode, the processor is active, but some of 
the nonessential services have been turned off. The application is unaware of the shallow sleep mode that 
is managed by the HHC system software. In the deep sleep mode, almost all services are turned off, the 
internal status of the processor is saved, and the HHC uses the minimum power required to wake up 
automatically when an interrupt occurs from the keyboard, touch screen, digitizing pad, communications 
system, or DSP. 

HCR Subsystem Description 
The HCR algorithm embodies an operator-trainable stroke-based approach. The operator can enter models 
for individual characters (alphabetic and numeric) during interactive training sessions. These models make 



up model databases that are employed by the recognition software as a basis for translating the operator's 
handwritten input from within applications. As the operator writes on the digitizing pad, strokes are 
digitized into a set of discrete points that are used as input to the recognition subsystem. Strokes are thinned 
so that not all points are retained; strokes are normalized with respect to a common scaling factor. After 
normalization, the stroke is compared to all strokes in the currently active stroke database, and a degree 
of match or penalty is determined for each. Once this process has been repeated for all strokes in the current 
input, the sequence of strokes is parsed into a set of potential symbol matches, utilizing the models in the 
currently active model database as references. As possible recognition results are computed, they are 
stored - along with their associated penalties - to be reported to the application. The HCR approach does 
not require the operator to write within a specified grid. Spatial separation between characters is not 
essential for recognition, and the user may overlap and overwrite characters. 

Application-generated contexts allow the recognition software to disambiguate between otherwise 
indistinguishable models from different databases (for example, numeric 0, 1, and 5 from alphabetic 0 ,  I, 
and S). Using context-sensitive dictionaries to constrain fields before the recognized result is reported to 
the user causes the perceived recognition accuracy to be higher than it would be if only character-based 
recognition were being used, and it causes it to be much higher when alphabetic and numeric contexts are 
available. Additionally, context provides a means for increasing recognition speed, because the database 
of models to be searched is smaller. 

HCR Subsystem Implementation 

The incremental nature of the HCR algorithm makes it a natural candidate for exploiting the parallelism 
offered by the DSP CP. The host processor is responsible for receiving strokes from the input processor, 
optionally inking the digitized points to the LCD, performing high-level filtering of the digitized strokes, 
and communicating the strokes to the DSP for processing. Additionally, application-level software 
running on the host processor communicates contextual recognition parameters and requests for 
recognition results to the DSP. The DSP incrementally processes the strokes as they arrive from the host 
by forming partial recognition results. Also, the DSP - in response to the host's requests - sets 
recognition parameters and generates final translations of pen input on the basis of the recognition 
parameters. 

Memory Organization of the DSP Card 

Figure 2 shows the DSP card's memory map as used by the HCR subsystem. The shared memory is 
partitioned into code memory, stroke data (input), recognition results (output), and a workspace for the 
HCR subsystem running on the DSP. The arrows in the diagram indicate readlwrite privileges for the host 
processor and DSP. This partition of the shared memory is a design choice, based on the readlwrite 
privileges. If some segment of the card memory requires write privileges for both the host processor and 
DSP, card logic in an onboard FPGNASIC handles this memory contention by giving precedence to the 
host. 

The DSP code is loaded into the shared card memory by the host during initialization of the HHC. The 
host then switches the DSP card from standard mode (in which the DSP is inactive) to smart mode, at which 
time the DSP begins execution from the code segment. The DSP initializes variables in its workspace and 
enters a processing loop, awaiting commands from the host processor. 



Figure 2. DSP Card Memory Organization for HCR 

Control Registers 

Interprocessor Communication 

The host processor and DSP communicate through dedicated 16-bit data, status, and control registers in 
the FPGAIASIC on the DSPImemory card (see Figure 2). Read and write access to the DSP data transmit 
and DSP data receive registers is enforced by the onboard logic. 
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The host communicates to the DSP by writing commands to the DSP data receive register. The host has 
only write access to this register; any host read from this register causes invalid data to be read. The DSP 
has only read access to the DSP data receive register; any DSP write to this register is ignored. A host write 
to this register generates an interrupt to the DSP. Similarly, a DSP read from this register generates an 
interrupt to the host. The host status register is accessed by the DSP to determine the status of host 
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The DSP recognition code is a stand-alone application that does not run under an operating system. The 
top-level DSP recognition code consists of a command processing loop that interprets commands written 
to the DSP data receive register. Thus, when a stroke becomes available to the host from the input 
processor, it is communicated to the DSP by first copying it to the card's shared memory. The host then 
issues a command to the DSP to process the stroke. Commands to initialize and reset HCR parameters are 
communicated similarly. Whenever the DSP has no pending commands from the host, it enters its lowest 
power mode [4]. Writes to the DSP data receive register awaken the DSP for further processing. 

DSP-to-Host Communication 

The DSP communicates to the host by writing commands to the host data receive register. The DSP has 
only write access to this register; any DSP read from this register causes invalid data to be read. The host 
has only read access to the host data receive register; any host write to this register is ignored. A DSP write 
to this register generates an interrupt to the host. Similarly, a host read from this register generates an 
interrupt to the DSP. The DSP status register is accessed by the host to determine the status of DSP 
communication registers. 

The RTOS running on the host uses interprocess communication primitives to provide race-free 
synchronization and communication mechanisms. The RTOS supports message queues that are not bound 
to any task. Tasks may send messages to a queue, and several tasks may request messages from the RTOS. 
When the DSP writes to the host data receive register, an interrupt service routine on the host places the 
DSP message on the input subsystem queue. This implementation provides a seamless interface between 
APIs running on the host processor and the HCR subsystem running on the DSP. 

Application Command Protocols 

The application command table (ACT) for the HCR subsystem is shown in Table 1. The INITIALIZE, 
RESET-HCR, and BUILD-RESULT commands have no parameters and are sent directly to the DSP data 
receive register by the host's APIs. The SET-PARMS and PROCESS-STROKE commands are sent after 
their parameters have been written to the input section of the shared memory. The DSP sends a 
RESULT-READY after it has generated the recognition results and written them to the output section of 
the shared memory. 



Table 1. Application Command Table for HCR Subsystem 

Command Name Host to DSP? Parameters Command ID Function 

INITIALIZE True None 

RESET-HCR True None 

SET-PARMS True Database, 
dictionary, # of 
return strings 

PROCESS-STROKE True Stroke data 

BUILD-RESULT True None 

RESULT-READY False Recognition 
results 

00 Initialize variables on 
DSP for HCR 

0 1 Reset HCR context for 
new entry 

02 Set HCR parameters 

03 Perform incremental 
recognition on next 
stroke 

04 Generate recognition 
result(s) based on 
parameters 

10 Signal that the HCR 
results are ready 

Results 

As of this writing, the implementation of HCR using the DSPImemory card is not yet complete. Porting 
of the HCR recognition software to a PC-resident EVM board containing a TMS320C5x DSP and 
sufficient memory to emulate the DSPImemory card is in progress. Initial results indicate that the overhead 
in  transferring data between the two processors is minimal and that a high degree of parallelism is possible. 
The final porting of the code depends on availability of the DSPImemory card. 
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Abstract 

In the years to come, speaker-independent speech recognition (SISR) systems based on digital signal 
processors (DSPs) will find their way into a wide variety of military, industrial, and consumer applications. 
This paper presents an implementation of a hidden Markov model (HMM) speech recognition system 
based on the 16-bit fixed-point TMS320C2x or TMS320C5x DSP from Texas Instruments. It includes a 
description of a minimal TMS320C5x-based system and shows how the HMM algorithm and the system 
algorithm interact. The report also presents system loading, along with a current list of the speech 
templates. In addition, it presents data showing the relative performance of the algorithm in a controlled 
environment. A discussion is included on future algorithm enhancements and reduction of the physical 
hardware system. The paper concludes with a description of a very large vocabulary SISR system based 
on the ~ ~ ~ 3 2 0 k 3 x  and TMS320C4x floating-point DSPs. 

Background 

Prior to the introduction of the HMM word recognizer, speech recognition was based almost entirely on 
dynamic time warping (DTW) techniques. These DTW recognizers are limited in that they are speaker 
dependent and can operate only on discrete words or phrases (pseudoconnected word recognition). They 
employ a traditional bottoms-up approach to recognition in which isolated words or phrases are recognized 
by an autonomous or unguided word hypothesizer. The recognition technique employed in DTW is 
straightforward. A set of speech templates are maintained in memory for each wordphrase in the 
vocabulary. These templates are based on linear predictive coding (LPC) models. As a new word or 
phoneme is acquired and placed in the speech queue, its features or characteristics are compared to each 
memory-resident template one wordframe at a time. As the acquired speech frame is compared, it is 
stretched or compressed in time to optimize the correlation between the memory-resident templates and 
the queued speech frame (hence, the term dynamic time warping). As this warping process progresses, the 
result of the optimized correlation is logged, and the score is updated. This is repeated for each template 
in the current vocabulary list. A process is then run on all the collected scores, yielding a best-guess estimate 
or hypothesis of the recognized word. These DTW systems have been implemented on DSP platforms with 
a throughput as small as five million instructions per second (MIPS). 

The TMS32O-Based HMM Recognizer 

The Texas Instruments speaker-independent continuous word recognizer provides a top-down approach 
to speech recognition using the continuous-density hidden Markov model. The Markov model (or the 
Markovnikov rule) was introduced by a Russian organic chemist, Vladimir Vasilyevich Markovnikov in 
1870. HMMs are statistical or stochastic processes, which, when applied to speech recognition, bring 
machine-based voice recognizers to new levels of performance. However, this increase in performance has 
its price. HMM-based speech recognizers require a digital signal processor, such as the TMS320C25, that 
can execute a minimum of 10 MIPS. As this report shows, the improved accuracy and system flexibility 
provided by the HMM-based system outweighs the added cost of the 'C25 or 'C5x over the 'Clx (5 MIPS). 

The Texas Instruments Speech Research Group in Dallas implemented the HMM-based speech recognizer 
described in this paper on a 'C25 in June 1988. This original application, which contained a vocabulary 
of 15 words (15 male and 15 female templates), implemented a voice dialer to show proof of concept. 
Figure 1 shows the grammar rules or vocabulary flowchart for this application. 



Figure 1. Voice Dialer Sentence Hypothesizer Flowchart 
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The HMM voice dialer can currently run on three platforms: 

A stand-alone TMS320C25-based voice dialer demonstration box 

A custom dual TMS320C25-based development platform named Calypso 

The TMS320C5x Evaluation Module (EVM) with analog front-end board 

In addition to the 15 words used in the voice dialer application, a total of 49 voice templates (male and 
female) are available for a user's unique end application. Table 1 lists the 49-word HMM vocabulary. 
Example sentences follow the table. 



Table 1. Current HMM Vocabulary (49 Words) 

ADD 

CALL 

DELETE 

EMERGENCY 

FORWARD 

LAST 

NOT 

PROGRAM 

SEND 

WAITING 

ONE 

FIVE 

NINE 

AREA-CODE 

CANCEL 

DISABLE 

ENABLE 

FROM 

MAIL-LIST 

NUMBER 

RECORD 

STOP 

YES 

TWO 

SIX 

BACK 

CONFERENCE 

DISTURB 

ENTER 

HOLD 

MESSAGE 

OFFICE 

REDIAL 

TO 

ZERO 

THREE 

SEVEN 

BLOCK 

CREATE 

DO 

EXTENSION 

HOME 

NO 

PLAY 

REVIEW 

TRANSFER 

OH 

FOUR 

EIGHT 

Example sentences from the vocabulary include: 

Call home 

Call office 

Call number five five five one two one two send 

Call extension two three enter 

Delete extension three five enter 

Create extension seven seven enter 

Disable do not disturb 

Disable call waiting 

Enable call back 

Block last call 

Voice-Dialer Performance Testing 

In 1990, a test was conducted on the HMM recognizer using the standalone voice-dialer demonstration box. 
A total of 2,272 sentences were tested in a closed-set experiment utilizing word templates from the 
vocabulary database noted above. Test sentences included the words call, oftice, home, area-code, numbel; 
extension, entel; and cancel, in addition to the normal digits. Speed-dialed sentences included the words 
home, oftice, and emergency. 



Sentence Recognition Performance 

Total number of sentences 2,272 
Total sentence errors 133 (5.9%) 

With substitutions 73 (3.2%) 
With deletions 4 1 (1.8%) 
With insertions 19 (0.8%) 

Word Recognition Performance 

Total number of words 12,785 
Total word errors 148 (1.2%) 

With substitutions 84 (0.7%) 
With deletions 45 (0.4%) 
With insertions 19 (0.1 %) 

System Considerations 
The system considerations or desirable objectives for a recognizer can be broken into two categories - 
functional (or ergonomic) and technical: 

Functional Requirements 
Speaker-independent recognition (no training required) 

Recognition of connected or continuous words (natural speech) 

High level of accuracy 

Ability to work on a wide cross section of dialects 

Reasonable size of vocabulary 

Affordability 

The functional criteria are straightforward, and the system should perform well enough to make it usable 
in a quiet environment by a majority of the population. Current low-cost, machine-based recognizers are 
not sufficiently robust to recognize all people at all times. Therefore, it is important to set limits on the level 
of performance. These limits or restrictions can be determined only through experimentation and test 
marketing. 

Technical Requirements 

The technical objectives are much easier to define because they are price- and performance-driven. 

Utilize as little memory as possible 

Work on a 16-bit fixed-point rnicrocontroller/DSP 

Incorporate minimal chip count for a small system form factor 

Use single voltage and low power for battery operation 



Things to Come 

As the technology progresses, speech recognition will find its way into a wider base of applications. These 
developments are currently under way at Texas Instruments: 

Adaptation of a microphone array for acoustic beam forming 

Active creation or modeling of background noise for noise templates 

Speaker-adaptive speech recognition 

A mix of speaker-dependent and speaker-independent recognition 

Each of the listed techniques may or may not increase the perceived performance. However, they all show 
promise. The hardest problem to overcome is background noise management, or the art of listening in the 
presence of noise. Noise management algorithms require an extensive amount of processing power to 
implement. As an example, adaptive noise cancellation deals with the problem of removing correlated 
noise (that is, noise that has some redundancy associated with it). This process requires large amounts of 
data memory, and, as noted, it is computationally intensive. Another technique that shows promise is the 
use of a microphone array. The array can focus or listen in a specific direction while subtracting the noise 
in all other directions. Another noise-related enhancement is the real-time creation of a template that 
matches the current background noise. This technique tries to cancel noise by ignoring it; hence, if the noise 
is known, a null set is returned when the noise is detected. 

In addition to enhancing noise performance, it is also desirable to increase the flexibility of the 
machine-based recognizer. One technique currently under development at Texas Instruments is the 
inclusion of a speaker-adaptive algorithm. In this algorithm, the SISR routine comes with a set of 
general-purpose RAM-based templates that are initialized during runtime from some nonvolatile storage 
media. As a user interfaces with the machine, the machine modifies or optimizes the templates for that user. 
This technique is useful when there is only one user per session, such as with a PC-based SISR system. 

In the area of speaker-dependent and speaker-independent recognition, a provision will be made so that a 
user can supplement the existing speech library with user-recorded templates, such as a trade or personal 
name: for example, CALL JIM. 

Example Platform 

The current fixed-point HMM recognizer, running the voice dialer vocabulary shown in Figure 1, requires 
a little over 6K words of program and around 40K words of data memory. Table 2 breaks out memory 
loading on a module-by-module basis and reflects performance on a 'C5x platform running at 20 MIPS. 

Table 2. HMM Processor Loading on a TMS320CSx 

Program 
Data Memory Memory CPU Loading 

Module (Words) (Words) at 20 MIPS 

Feature Extractor 5K 1.8K 7% 

Compute Word 16K + 0.75Wword (est.) 0.6K 2 1 O/O 

Compute Sentence 

HMM Executive 

Initialization and I10 0.1 K 0.5K 2% 

Totals 26.2K + Compute Word Templates 5.9K 49% 



Given the total system memory requirements, this algorithm could be packaged in a single 'C53 with one 
external AID converter and two external 70-11s 32K-byte x 8-bit SRAMs. Note that the entire program 
memory (5.9K words) can reside in ROM. However, all data memory except the compute word templates 
(0.75K bytes x 16 bits per word) must be of the read-write type. 

Figure 2. A Minimal TMS320C53 HMM System 
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The system shown in Figure 2 provides 16K words of program ROM and up to 36K words of data RAM 
(it is assumed that there is a host interface for template upload; if not, an additional 1M words of ROM is 
needed). Further integration is possible with Texas Instruments customized DSP (cDSP) devices. A cDSP 
implementation will reduce this design to two chips: a monolithic DSP, including an AID converter with 
system interface logic, and an external 70-11s 32K-byte x 16-bit SRAM (112M word SRAM). 

How the Texas Instruments HMM Implementation Works 

The Texas Instruments HMM speech recognizer consists of three computational processes running 
together: a feature extractor, a word hypothesizer, and a sentence hypothesizer. The feature extractor, as 
its name implies, reduces the continuous speech to a series of 20-ms frames or states whose features are 
reduced to a finite feature set called a generalized set feature, or GSF. The HMM processes compute word 
and compute sentence guide the recognition - first at the sentence level, then at the word level. These three 
processes interact so that the feature extractor feeds the word hypothesizer, which is no longer autonomous, 
but guided by a sentence hypothesizer. Hence, recognition is now accomplished on a state-by-state basis. 

The HMM processes, at any level, can be expressed in terms of mathematical probabilities as the likelihood 
that one state follows another. If the vocabulary is known and the sentence structure is known and finite, 
then it is a simple process to predict the next state, given the present and past states. This is done by scoring 
frames of extracted features along paths that terminate at unique solution end points. Hence, paths scored 



at the state level point to word level, which points to sentence-level solution sets. All along the way, 
probabilities are calculated and assigned in guiding the process. 

Figure 3 shows graphically how the HMM word hypothesizer works. Within the voice dialer system, after 
the word CALL is recognized, the sentence hypothesizer has only two paths from which to select: HOME 
or OFFICE. The lower portion of Figure 3 shows the path selection resulting in OFFICE. 

Figure 3. Example of an HMM Flow 
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Figure 4 on page 222 shows how this application of the hidden Markov model continuous word recognizer 
is implemented on the 'C2x or 'C5x. The speech data flows through the model from left to right, while the 
recognition is driven from right to left. 

The process is started and sustained as follows. Time samples, which are taken every 125 ps, are queued 
in the pre-emphasis digitized speech sample buffer (PDSBUF). These samples are then operated upon by 
the feature extractor on a frame-by-frame basis (a frame is equal to 160 samples). The feature extractor 
interfaces to five data structures: 

The LPC filter coefficient table, or rhosmp table, as noted in Figure 4 

The pre-emphasis data structure buffer 

The word models 

The word model table 

The generalized set features buffer (GSFBUF) 



These data structures and their contents are discussed on the following pages. In general, the feature 
extractor performs two functions: 

1. It reduces a frame of speech data to a finite data set that describes the speech type. This reduced 
data is called a state, which is the smallest unit of time in the algorithm (20 ms). 

2. Next, it expresses the state so it can be approximated by a Gaussian distribution. 

Figure 4. Block Diagram of the HHM Recognizer 
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Once a frame of speech is processed by the feature extractor, the results are queued in the GSFBUE At this 
point, the 160-element frame has been reduced to a 14-element state vector in the GSFBUF. These 14 
memory elements contain the following information: 

Frame energy 

Inner product 

10 principal feature vectors (PFVs), PFVl through PFVlO 

Utterance flag (voiced or unvoiced speech) 

Ongoing-word flag (still in same utterance) 

Once a new frame is added to the GSFBUF, the HMM process takes over (compute word and compute 
sentence). The function of the HMM is to present a hypothesis on an optimal path for the frame. Hence, 
the contents of the GSFBUF are continuously being interrogated by the word hypothesizer to determine 
the best path score to a unique end point (word), given the current state and previous states observed. In 
addition to the RAM-based buffers, there are three ROM data structures that the feature extractor accesses. 
The rhosmp table contains all the coefficients used in the various data reduction routines within the feature 
extractor, the 14 5-tap filters, and the LPC-10 coefficients. 



Figure 5. The Feature Extractor 
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Next, the word model (WRDMDL) data structure contains all the word model templates in the vocabulary. 
This buffer is typically the largest memory array within the recognizer. The word hypothesizer indexes into 
this data structure via the word model table (WDLTBL). This table contains the starting address, length, 
and word ID for each word model. As noted above, extracted features or states are queued in the GSFBUF. 
They are correlated against the valid word models, as determined by the word and sentence hypothesizer 
for that state. 



Once a word is processed, all associated state vectors are removed from the GSFBUF and transferred to 
a slot of a buffer in memory called the word scoring data buffer (WSDBUF). Each slot in the WSDBUF 
stores the following: 

Level index - sentence-level, word-level, or states 

Model index - current index pointer into the word model data structure 

State index - what index within the model 

Path-scr - best-path score for the current frame 

Path-ptr - scoring data structure (SDS) index of the previous frame in best path 

Time - input frame time index 

Last-time - time index of last path through this point 

Next-state - SDS index of next state for this model 

Next-word - SDS index of next word 

The data is now reduced from 160 words (PDSBUF) to 14 words (GSFBUF) and to a 9-word WDS buffer. 
However, as multiple state vectors were required for each word in the GSFBUF, multiple WDSBUF frames 
are needed for best path determination, resulting sometimes in an increase in total memory requirement 
to sustain the HMM process. The final phase in the HMM process is the reduction and subsequent linking 
of the WSDBUF vectors (based on their path score) so that an optimal path vector set remains. This vector 
set points to a unique word ID determined by the read-only sentence model (SENMDL) data structure. This 
array maps vocabulary words to model IDS within the sentence IDS or compute sentence, in conjunction 
with the head reference array structure (HDREFA). This read-only array maps a vocabulary word ID to its 
first model ID. The subsequent fields in the HDREFA model table are used to link multiple models for a 
given word ID when that word ID is used more then once in a sentence model. With the IDS known, the 
word IDS are passed to the COMBUF, where the host system reads the results. Hence, the COMBUF 
contains the recognized words that are to be returned to the host. The COMBUF is organized as follows: 

ID of the recognized word model 

The error (32 bits) in the word model 

Frame index of the word model's beginning 

Frame index of the word model's ending 

Frame index at which the word model was created 

Fixed Point Versus Floatlng Polnt 

Thus far, the discussion has focused on implementing the HMM algorithm on a fixed-point DSP. A 
floating-point processor such as the TMS320C3x, with its vast 16M-word address range, DMA controller, 
and inherent floating-point attributes, makes coefficient representation a nonissue. The elimination of 
numerical concerns can significantly reduce development time, but this is not necessary for implementing 
the HMM algorithm. As shown, a fixed-point processor performs the algorithm equally well and can 
significantly reduce system cost. However, executing a fixed-point system requires a thorough 
understanding of the complex numerical issues. Typical fractional variables, such as the features used to 
represent the acoustic data (GSFBUF), are represented on a fixed-point DSP by using a Qd,  format. With 
this format, the 16-bit 2s-complement field is evaluated with a sign bit, n integer bits, and 15-n fractional 
bits. 



Figure 6. Example of Q 4/16 Notation 
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Figure 6 shows the dynamic range of a Q4lI6 number is: 211 - 2-4 = 2047.9375 to -211 = -2048, where a 
Q15/16 number would range from 2O - 2-15 = 0.99996948 to -2O = -1. 

Table 3 shows several examples of Qd, notation, as used in the implementation of the fixed-point Texas 
Instruments HMM recognizer. 

Table 3. Examples of Qntm Notations (Fixed-Point Representation) 

variable Qd,,, Notation 

Feature vector Q4116 

Cumulative pathscores Q15/16 

Log of transition probabilities Q1 511 6 

Log of observation probability Q15116 

As noted, a fixed-point DSP can reduce system cost. However, in SISR systems, size of vocabulary is 
all-important. SISRs need a floating-point system, not only for its ability to represent values in 
floating-point format, but also for its memory reach. The 'C2x and 'C5x can access only 64K words of 
linear data memory, while the 'C3x can access 16M words, and the 'C4x 4G words. The size of the 
vocabulary is limited only by processing power, as opposed to accessible system memory. To implement 
a very large vocabulary recognition system via the HMM technique presented here, the following must be 
accomplished. 

The feature extractor must be improved to increase its granularity and to make it more robust. 
As more and more words are added to the vocabulary data base, it becomes increasingly more 
difficult to distinguish similar sounding words. 
A sentence hypothesizer must be developed that can track and predict words according to 
grammar rules for the English language. In addition, the sentence hypothesizer must be adaptive 
in that it must be able to learn user-specific grammar rules (slang). 

A word hypothesizer must be developed that is speaker adaptive (work ongoing) and allows the 
addition of user-defined vocabulary (again, work ongoing). 

A technique must be developed for creating templates from text-based descriptions. Optimally, 
these descripters should be based on a published standard, such as the symbols used in the 
respelling for pronunciation, as found in dictionary pronounciation guides. 

Example: elephant -( '&'a -fa nt) 



Figure 7 shows a very large vocabulary SISR system based on the 'C4x parallel processor development 
system (PPDS). 

Figure 7. SISR System for Very Large Vocabulary 
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The feature extractor, compute sentence, and word hypothesizer are distributed over the four 'C40s. The 
word hypothesizer uses two 'C40s because it is the most computationally intensive task. The feature 
extractor feeds output (frame or state data) to the two word hypothesizers via two 8-bit parallel ports. In 
addition, the sentence hypothesizer feeds both word hypothesizers, which, in turn, feed their resuits back 
to cornpute sentence. Although the above system has not been implemented. it demonstrates a logical 
progression of the technology. 

Conclusion 
In summary, one TMS320C53 DSP can implement a robust HMM speaker-independent 
speech-recognition system with just under 50% processor loading. This. with future enhancements to the 
existing HMM SISR algorithm and hardware systems, rnakes a single-chip DSP-based recognizer in a 
noisy environment a reality. This paper discusses the system resource requirements, vocabulary flexibility. 
and possible future enhancements. The data presented shows how a fixed-point processor is ideal for small 



vocabulary systems in which expense and power are a concern.The paper also shows how this HMM-based 
algorithm can be adapted to a floating-point processor, allowing for a very large vocabulary system. 
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Introduction 

The cellular telephone industry has experienced tremendous growth since its beginning more than ten years 
ago. What was once considered to be a toy for high-profile executives has now become an integral 
communications tool for over 14 million subscribers in the U.S. alone. Growth rates are expected to 
accelerate during the next few years. 

Automated speech recognition (ASR) technology has been a bedfellow of cellular telephone technology 
for many years. Most of the large cellular subscriber unit manufacturers have developed their own ASR 
systems to facilitate hands-free dialing. The benefits of combining these two technologies are obvious: the 
less time and focus a driver gives to placing a call, the more attentive he is to operating the vehicle. 
Hands-free kits that include a far-talk microphone and speaker are now required by law in some European 
countries for conversing once a call is connected. Various states are currently considering similar 
requirements. Similarly, requirements for hands-free dialing capability via speech recognition are not too 
far off. 

This paper explains how ASR-enabled dialing capability can be implemented with DSP technology from 
Texas Instruments. Speech recognition technology has never been as accurate, user-friendly, and 
inexpensive as it is today, or as easy to integrate into state-of-the-art cellular subscriber systems. 

The Technology 

Most of the past and existing ASR units on the market are limited to what is known as speaker-dependent 
(SD) technology. This technology has exhibited some rather fundamental performance limitations. SD 
systems work by comparing a whole word input with a user-supplied template. Templates are developed 
by each user during a rather cumbersome training exercise, which usually takes place in a quiet, stationary 
environment. Since the systems are used in a moving car environment, the increase in background noise, 
coupled with a user's inflection change (people usually shout slightly, and unconsciously, when a car is in 
motion) confuse most SD systems. Accuracy rates are typically less than 90%. 

Speaker-dependent ASR systems are steadily being replaced with speaker-independent (SI) systems. 
SI-capable systems approach the recognition problem in a fundamentally different manner than SD-only 
systems. Once an input command is captured and digitized, an SI system will parse it into phonetic-like 
pieces, or features. These speech features are then compared with supplied target data, not with templates 
supplied by the user. 

The training procedure for a speaker-independent recognizer is both processing and data intensive. Speech 
variations due to sex, age, accent, and speaking habits must be considered, along with the great variety of 
noise sources, internal and external to the car, that have a tremendous effect on the signal-to-noise ratio. 
This implies that an application-specific speech data base is required for the vocabulary training process. 
Consequently, each SI vocabulary is essentially hand-crafted for the particular word list and the 
environment of use. The diversity of the training data helps account for the robustness of the resultant 
recognizer in the presence of real users and all types of automobile noise. 

Usually, speech-independent reference data is derived from a large data base of speech tokens collected 
inside several cars, from hundreds of speakers, over a variety of road conditions, and with high-quality 
digital recording equipment. The computer-controlled recording equipment has a display screen that 
automatically prompts the donor to speak through a given vocabulary. The incoming speech sample is 
transduced by a noise-canceling microphone placed on the windshield and is recorded on a remotely 
controlled digital audio tape (DAT). 



The result is a scheme that is extremely robust. Matching pieces of sound to feature templates derived from 
rigorously collected data reduces the amount of computational power required and is more forgiving of 
inflection change than an SD scheme. For example, a cold will make John sound less like John specifically, 
but his speech will continue to exhibit feature characteristics consistent with the statistical samples derived 
from the database. Additionally, technologists at Voice Control Systems Incorporated (VCS) have done 
empirical analysis on SI feature recognition and have even identified some features that occur often but 
are irrelevant to recognition. The complexity of the task can be reduced and the odds of a successful 
recognition increased if some of these redundant features are disregarded. 

The Human Interface 

All recognition systems consist of two basic components: the core recognition engine and the human 
interface. The adage "you're only as good as your presentation" is very apropos when designing ASR 
systems. Technologists tend to devote most of their time to enhancing a system's raw recognition power, 
bandwidth, and memory allocation, etc. This is all well and good. Marketers however, should make sure 
that the interface gets an equal amount of attention. 

Besides high accuracy, the major benefit of a speaker-independent capable system is its intuitive, 
user-friendly presentation. Acceptance by the user is critical, especially during the first use. The system 
should prompt the user with high-quality, stored human speech and should respond quickly to each input. 
The result should be a semiconversational experience, such as the following (the user input is in bold 
CAPITALS and the response is in lowercase): 

"VOICE CONTROL" 
"ready" 

"CALL" 
"calling?" 

"OFFICE" 
"calling office, correct?" 

"YES" 
"dialing ..." 

In this example, the user accesses a memory location by using one of many possible predetermined name 
tags (for example, office, home, school, information, doctor, etc.). 

A user should also be able to place a random phone call by using a speaker-independent digit dialing 
sequence, like this: 

"DIAL" 
"phone number, please" 

"THREE" 
[ beep, display 3 ] 

"SEVEN" 
[ beep, display 7 ] 

etc. 
"VERIFY" 

"three, seven, (etc.)" 
"SEND" 

"dialing ..." 



Figure 1 shows a flowchart, or decision tree, of a well-tested human interface. 

Figure 1. Flow Diagram of Human Interface 
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Note that a system can be both speaker-independent capable and speaker-dependent capable. SD 
technology allows a user to assign personal name tags to memory locations in addition to the SI locations 
mentioned above. Depending on the memory available, a user can program phone numbers into memory 
locations labeled "John Smith", "Fred's Office", "Pizza", etc. For the greatest recognition accuracy, it is 
best to limit the number of customizable name tags to about ten. VCS uses its feature-matching algorithm 
for SD comparisons as well as for SI comparisons, resulting in high accuracy rates. 
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callers to utilize voice mail or other interactive response functions without the need for touch-tone input. 
The recognition algorithms in these applications are handled by dedicated TI DSP hardware. 

VCS began to migrate its ASR expertise into single-channel applications about four years ago. The goal 
was to maintain high functionality while minimizing hardware cost and space requirements. These first 
products used custom interface circuitry, standard X86 microprocessors, a CODEC, and memory for the 
core recognition hardware. The custom chip has been redesigned to reduce cost for the recognition core 
to about $30 in quantities of 10,000. Manufacturing tooling, testing, packaging, and labor expenses can 
easily lead to a total cost per unit of twice this amount. Although the circuit can be made quite small, 
adequate space must be allowed in a transceiver unit, a 3-watt booster, an external enclosure, or even within 
a handset cradle. Building this chipset directly into a portable cellular telephone remains impractical at this 
time. 

ASR can also be used with digital cellular phones because VCS code can take advantage of the hardware 
already resident within the handset. This hardware includes a CODEC, memory, and digital signal 
processing capability. Consequently, adding ASR code may require some additional memory capacity but 
does not require the design and manufacture of an entire circuit board. The total cost is greately reduced- 
from about $60 to about $15-which includes additional memory and software licensing. 

Since VCS's ASR code uses only a small amount of DSP bandwidth, the cellular telephone can execute 
recognition operations in parallel with being enabled for incoming calls. For example, our discrete 
speaker-independent and speaker-dependent capability utilizes about 25% of the bandwidth for one 
channel of recognition on a TMS320C25 operating at 40 MHz. Additionally, the ASR code does not 
compete with the digitization and companding exercises undertaken during a conversation, because the 
recognition task for dialing precedes the actual placement of a call. 

In this scheme, the cellular telephone task master communicates with VCS ASR object code via 
applications programming interface (API) commands. This involves a reasonable level of integration, but 
the end result is the lowest incremental cost option for adding ASR to a cellular telephone. An API for the 
Texas Instruments TMS320C2x DSPs can be acquired directly from VCS. 

Accuracy 

VCS has designed a tape test exercise to systematically determine the recognition accuracies of a newly 
designed voice recognition unit (VRU); the procedures for quantifying the performance of 
speaker-independent and speaker-dependent commands are different. A properly designed VRU will 
utilize these two technologies to maximize the acceptability of the system by the operator. 

Tape testing is conducted under laboratory conditions and with a direct audio path between the tape and 
the VRU. The total number of SI commands a system is capable of recognizing is simply a function of 
available memory. However, at any given time, only a specific subset of the total SI vocabulary should be 
active. In general, each subvocabulary should be limited to about 12 elements, even though larger 
subvocabularies are possible. Smaller subvocabularies maximize the performance of the technology and 
minimize operator choice and confusion. Each speaker-independent subvocabulary (that is, each path in 
the tree) should be tested. 

The test data includes 50 speakers, of which half are male and half are female. The data is obtained from 
a data collection of every recognizable word in the vocabulary, as described above. These data are reserved 
for testing purposes only and are not to be used to train the VRU. 



Each response is recorded as the source tape is played. Twice, the tape plays each person speaking the entire 
speaker-independent vocabulary, divided into the designated subvocabularies. The expected error rates for 
VCS speaker-independent technology are: 

Average rejection error rate < 3.0% 

Average substitution error rate < 1.5% 

A rejection error occurs when the system rejects a valid word input on the basis of insufficient class 
distinction. A substitution error occurs when the system substitutes another word from the active 
vocabulary in response to a valid word input. On occasion (less than 1 % of the time), the system may not 
respond to a spoken input, because the word was not spoken loud enough. These cases should be ignored 
when the rejection and substitution error rates are computed. 

Softening the impact of an error is the job of the user-friendly interface. For example, if the VRU responds 
with a polite "pardon?" following a rejection error, most people will patiently repeat the input (at least 
once) and enunciate a bit more clearly. The system typically accepts the next attempt, and the user proceeds, 
sometimes unaware that an error has occurred. For this reason, an SI rejection error rate under 4% is 
perfectly acceptable for most users. 

VCS systems have the capability to handle at least one SD vocabulary, although with enough memory, more 
are possible. However, only one vocabulary should be active at any given time. During testing, this 
speaker-dependent memory should initially be cleared. A representative group of ten people, five male and 
five female, should participate, with a minimum of three passes. Words not easily confused should be used 
for this test. 

home office Steve Bob Mary Jones 

Sears Jill Miller weather voice mail John Smith 

Each member of the group then rotates through the above list ten times, trying to recall the correct 
command. On average, the expected substitution error rates for VCS speaker-dependent vocabularies are 
less than 5%. SD vocabularies are not prone to rejection errors. 

It is extremely difficult to combine technologies, (that is, to have a speaker-independent vocabulary 
simultaneously active with a speaker-dependent vocabulary). Situations like this should be avoided, if for 
no other reason than to minimize the confusion of the operator. 

Code Availability 

The associated software is available for licensing from Voice Control Systems, 14140 Midway Road, 
Dallas, Texas 75244. Relevant data sheets are also included in the TMS320 SofnYare Cooperative Data 
Sheet Foldel; Texas Instruments literature number SPRT 1 1 1. 



Summary 

With a PC, multimedia hardware, and a relevant technical paper in the public domain, an engineer can 
design a reasonable speaker-dependent ASR system. The accuracy is usually in the mid-80% range, as long 
as the environment is quiet. Improving this capability to handle speaker-independent input, achieve a 97%+ 
accuracy in noisy environments, and cost as little as $15 per unit is quite another challenge. 

VCS has worked for more than a decade in tedious research and testing to incrementally improve its 
technology to these levels. It is predicted that the features and benefits offered by ASR will greatly 
influence subscriber unit purchases. 
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Introduction 

With the advent of subnotebook computers and personal digital assistants (PDA), there is an ever 
increasing need for a universal communications engine that is compact, simple to use, and dynamically 
configurable to suit various operating environments. In the desktop computer world, there is rarely a need 
for portability, whereas in the world of PDAs, portability is everything. This includes not only the computer 
itself but also any peripherals that go with it. The Personal Computer Memory Card Interface Association 
(PCMCIA) standard has made a significant contribution toward meeting this requirement. 

Figure 1. DSP Card Block Diagram 
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All of the PCMCIA cards available today are single-function products and lack the flexibility to be 
dynamically reconfigured to support multiple applications. The PCMCIA DSP card described here was 
defined to be used by the host CPUs as a generic coprocessor or as a storage device. For larger data storage 
applications, the on-board SRAM can be replaced by lower cost, low-power DRAM devices. However, 
advanced digital signal processing applications such as V.Fast modems and digital cellular phones require 
higher speed SRAMs to allow full-speed DSP operation. When appropriate algorithms are loaded, the host 
can transfer data to the on-board memory and command the DSP to perfom specific tasks, such as 
handwriting recognition, image or voice data compression, or music synthesis. An external analog 
front-end (AFE) card can be connected to the DSP card if the application requires external analog 
inputloutput capability. 

The architecture and design described here allow users to configure the card as a datalfax modem, 
speakerphone, telephone answering machine, note taker, character recognition system, or business audio 
card by merely downloading the appropriate DSP algorithm to the card. Replacing the wireline telephone 



interface circuit on the AFE card with an RF circuit and antenna allows the same DSP card to support 
wireless data or voice communications. 

A key requirement for any portable system is low power consumption. This DSP card uses a TMS320C5 1 
DSP, which is ideal for the PCMCIA application because of its very low power consumption, high MIPS 
rate, and very low cost. Another important system requirement for a portable multifunction DSP card is 
the ability to provide processing power on demand. A card running a simple speech compression algorithm 
for a note taker may need less than 5 MIPS, whereas a voice-over-data system running a V.Fast or V.32bis 
modem and higher quality speech compression algorithm may need 40 MIPS or more. Because of the 
flexibility of the C5x DSP's clock input scheme, this design allows the host PC to configure the DSP to 
run faster or slower via s/w commands. 

System Architecture 

The DSP card system architecture is defined so that any algorithm developed for a particular DSP could 
be run on non-PCMCIA platforms, provided that particular DSP is available. The host system can treat the 
DSP card as a programmable function coprocessor. The system applications software needs only to know 
which DSP a particular algorithm is developed for. This allows the DSP card system to be integrated onto 
a notebook PC or PDA motherboard by merely replacing the PCMCIA interface with the appropriate host 
system interface. 

The PCMCIA interface logic and additional logic needed for the communications and control are 
implemented in less than 5,000 gates in an FPGA. For highly integrated systems and motherboard 
applications, these functions can be easily integrated with the DSP as a single device through TI'S TEC320 
cDSP approach. The hardware- and host-independent architecture supports a WindowsTM 1 application, 
using the DSP Resource Manager to run the same application and DSP algorithm on multiple platforms 
and hosts. 

The architecture defines any host memory provided on the card to be shared between the host PC and the 
local DSP. This eliminates data bandwidth limitations and facilitates fast block transfer of data or 
downloading of DSP algorithms. Because of this dynamic algorithm loading capability, the host can treat 
the on-board DSP as a programmable function coprocessor. A real-time memory paging scheme makes it 
possible to load different application algorithms into different pages for fast reconfiguration and task 
switching. 

The on-board FPGA arbitrates any conflicts for access of shared memory between the host PC and the DSP, 
with the host access having higher priority. The FPGA also implements all necessary host system interface 
and control logic. Several dedicated communication registers are provided in the FPGA to allow the host 
PC and the DSP to communicate without interrupting DSP operation. Buffered registers are provided in 
the FPGA for the required programmable bit YO. 

The PCMCIA DSP card interfaces to the host as a PCMCIA memory card and an I/0 card. The PCMCIA 
specification supports up to 64MB of PCMCIA common memory in addition to a separate attribute 
memory space. For a 16-bit fixed-point DSP such as the TMS320C5x, this translates into 32M (16-bit) 
words of external prograddata space. The attribute memory can be used by the DSP as 32M (8-bit) bytes 
of global data space. Both memories must obviously be paged by a DSP with only a 16-bit address. 

1 Windows is a trademark of Microsoft Corp. 



The DSP card architecture is expandable to support the full extent of PCMCIA memory, which the DSP 
can access in paged mode under software control. The paging feature allows users to load different 
application algorithms into different pages for dynamic reconfiguration and task switching. The PCMCIA 
common memory is mapped into the DSP's datalprogram space, and the PCMCIA attribute memory is 
mapped into the DSP's global data space. 

This particular implementation limits the DSP's paged external data and program space to 3M words and 
global data space to 128K bytes. The DSP card is populated with two sets of fast (15-ns) SRAMs - one 
64K-bytex 16-bit SRAM in one set and two 128K-byte x 8-bit SRAMs in the other. When the 
64K-byte X 16-bit SRAM is enabled, it is used by the DSP as combined data and program memory. When 
the 128K-byte x 8-bit SRAM is enabled, it is used as separate 64K words of data and 64K words of program 
memory. The entire 256K bytes of memory are accessible by the PC in byte mode or word mode. However, 
the DSP can access only one of these memories at a time, as enabled by the system configuration register. 
The card also has 128K bytes of flash memory, which can be programmed by the PC. The DSP can be 
configured to boot load from this flash memory upon reset. Although the entire flash memory is mapped 
into the PC's attribute memory space, only 32K bytes are mapped into the DSP global data space at any 
given time. 

The host PC can access the card as a 16-bit UO device by writing to the configuration registers. The LiO 
address for the card is selectable by the PC in the card configuration registers. When the DSP card is 
configured as an VO-mapped peripheral, the host communication registers are dual-mapped into the PC's 
common memory and V0 space. 

Figure 2. DSP Card Architecture 
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Figure 2 shows a block diagram of the DSP card. The PCMCIA connector appears on the left side of the 
board. The FPGA integrates all discrete logic in the system. The system clock to the DSP is provided by 
the FPGA for the control of the DSP's operating speeds. A 48-pin analog front-end (AFE) connector 
provides an external interface as well as system development and debug. The DSP serial port signals are 
available at this connector along with programmable input and output pins and DSP interrupt pins to 
monitor, configure, and control A/D converters, DIA converters, and other external devices. The connector 
also provides DSP emulation control pins to help DSP algorithm development on the card using the TI 
XDS5 10 emulation system. 

Operation 

The card's operating mode is controlled via the control, status, and communication registers in the FPGA. 
Some of these registers are accessible only by the PC, some only by the DSP, and some by both the PC and 
the DSP. These registers are mapped in the common memory space of the PC and I/O space of the DSP. 

The DSP card can operate in two modes, the standard mode and the smart mode. In the standard mode, only 
the signature register (SIGR) is accessible to the PC. Other registers exist only when the card is in the smart 
mode. 

Table 1. DSP Card Registers 

Standard Mode 
In the standard mode of operation, the DSP is reset and the clocks are turned off, disabling the DSP. This 
reduces the standby power and also gives the PC uncontrolled access to the shared memory. In this default 
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mode, the card appears to the PC and is used by the PC as a standard memory card only. The host can 
download various communications signal processing (CSP) algorithms to the card without enabling the 
DSP. The host can also program the flash memory with a DSP initialization code or even a real-time DSP 
operating system before enabling the DSP. The DSP does not become active until it is specifically made 
active by the host PC. 

Smart Mode 

In the smart mode, the communications registers become active and available to the host and DSP. The host 
continues to have full access to the entire memory on the card. However, when the host PC accesses the 
shared memory, the DSP operation is temporarily halted because the arbitration logic must put the DSP in a 
hold condition to give the PC access to the memory bus. Control and communication between the DSP and 
the PC are implemented via the host communication registers. Although the host PC accesses these regis- 
ters as regular shared memory, they are physically located in the FPGA. This allows the PC and DSP to 
access these registers without halting the DSP operation. 

Switching Between Standard Mode and Smart Mode 
When the PC writes the DSP signature pattern (A320), the DSP is activated and the card is switched from 
standard mode to smart mode. Once a valid signature is detected, the corresponding bit is set in the DSP 
control register, DSPCR. Resetting this bit automatically deactivates the DSP and switches the card to 
standard mode. An alternate method of switching modes is writing to a user-defined register in the 
PCMCIA attribute memory space. 

Memory Organization 
The PCMCIA DSP cards provide two separate memory spaces for the common memory and attribute 
memory. Both memory spaces are accessible by the DSP and the PC. The DSP accesses the common 
memory in its program and data space and the attribute memory in its global data memory space. 

The ability to switch efficiently between various DSP tasks without having to reinitialize or reload is critical 
for any multifunction communications system. Such a system needs a common memory area that DSP 
operating systems and the host applications can always access to save system parameters and the operating 
system itself. Page 0 of the DSP data and program memory is defined to be always active. Thus, DSP 
operating systems can use page 0 as system memory and additional pages as application-specific memory. 

Bus Arbitration 
Both the DSP and the PC can access the shared memory on the card. The PC always has higher priority 
for accessing the memory bus on the card. During PC accesses to the memory bus, the DSP operation is 
halted. The arbitration logic in the FPGA asserts the HOLD signal to the DSP and extends the PC memory 
bus access cycle by asserting the WAIT signal. Once the DSP acknowledges the hold by asserting HOLDA, 
the PC WAIT is released and access to shared memory is completed. As soon as the PC completes its access, 
control of the shared memory is returned to the DSP. Since communication, control, and control registers 
are not resident in the shared memory, any PC access to these registers will not halt the DSP operation. 

Memory Access by the PC 

When the PC accesses the shared memory, the DSP is put on hold to grant control of the bus to the PC. The 
PC's memory access is extended by using the WAIT signal until the DSP puts its bus in the high-impedance 
state, as indicated by HOLDA signal. There is a time-out if HOLDA is not granted in time. When the card 
is in smart mode, the PC cannot access the first 16 bytes of the shared memory (also note that the PC cannot 
access DSP internal memory). This could be used as protected memory for the DSP. PC accesses to this 



block do not cause the DSP to be put on hold. The PC must load the DSP reset and interrupt vectors and 
the application algorithm before switching the card into smart mode. Since the PC can access the entire 
memory on the card without consideration of the DSP page sizes, memory pages not used by the DSP can 
be dedicated exclusively for the PC. 

Memory Access by the DSP 
The 'C5x versions of the DSP cards can address a maximum of 3M words of common memory. The DSP 
address range is expanded by using the page selects. Page size for the 'C5x DSP is 32K ( x 16) words. 
Page 0 (both program and data memory for the 'C5x) is always enabled and cannot be deselected via page 
select bits in the SYSCFG register. This allows DSP operating systems to use this memory without 
affecting any memory dedicated for DSP applications. 

Loading and Executing a Single Algorithm 

Initially, the PC loads the desired algorithm to the DSP memory and initializes the DSP. Then the PC 
enables itself to be interrupted by setting the appropriate enable bits in the DSP control register (DSPCR). 
This interrupt can be generated by the AFE card (voice activated switch, ring detect, etc.), depending on 
the application. 

Figure 3. Loading and Executing a Single Algorithm 
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Once the algorithm is loaded and the system is initialized, the host PC can reduce power consumption by 
turning off the DSP clock, which automatically puts the DSP in a hold condition, placing its buses into the 
high-impedance state and allowing the PC quicker access to the remaining unused memory on the card. 

Operating System 

When the desired external event occurs (indicated by the interrupt), the PC turns the DSP clock on, and 
the DSP starts executing the algorithm. Since the algorithm is already loaded into DSP memory, there is 
no delay in loading the algorithm; this makes fast system response time possible. 

PCMCIA DSP Card 

Note that the code may also be written into global data memory, and the DSP may be bootloaded by the 
PC to force the DSP to run any preselected default application. 



Loading and Executing Multiple Algorithms 

First, the host PC initializes the DSP card and loads the DSP operating system. Now the operating system 
can load multiple DSP algorithms into the DSP's local memory by using the paging scheme. Each 
32K-word page could be used for a specific application. Algorithms that require more than 32K words of 
memory can use multiple pages. Since the paging scheme is needed only for DSPs with a 16-bit address 
reach, the host PC or other 32-bit DSP, such as the TMS320C3x, can ignore the paging scheme. Also note 
that a real-time DSP operating system, such as SPOX 2.0, can be loaded into the DSP's on-chip RAM or 
mask-programmable ROM, freeing the entire external memory for an applications program or data. 

The PC and the DSP must follow a predetermined handshake protocol. Commands and data can be passed 
easily by using the communication registers without halting DSP operation. The DSP operating system 
controls enabling of DSP prograddata pages and transmission on processed data to the PC. 

Host Communication 

The host PC and the DSP communicate to each other via dedicated host communications registers. These 
registers are dual-mapped into the common memory space and V0 space of the of the host PC. They are 
always mapped into the VO space for the DSP. 

The appropriate control and status registers can be programmed to allow an interrupt-based handshake 
between the host and the DSP. Both the DSP and the host PC can also poll the appropriate bits in the status 
registers, where interrupts are not available. This could be true in some motherboard applications, where 
a single integrated device may share the local memory with the host CPU. 

Conclusion 

With a real-time DSP operating system such as SPOX 2.0, which is small enough to be executed from a 
DSP's on-chip ROM, and application algorithm modules loaded into the shared memory as needed by the 
host PC, the PCMCIA DSP card could become the universal communications system for the emerging 
mobile office environment. With the TEC320 cDSP available today, the same set of CSP software modules 
could run on a PDA motherboard or PC add-on card if the required analog interface is provided. With such 
a universal communications platform and standardized user applications interface, the hardware 
dependencies and porting nightmares should be a thing of the past. 
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Introduction 

This report furnishes guidelines to DSP application software developers on how to organize and structure 
their software to facilitate its maintenance and ease its porting to any custom-defined DSP hardware 
platform. The model DSP platform used here is a PCMCIA-based 'C5x DSP card with an external 
connector for an analog interface. (For details on the card, see the preceding report, The PCMCIA DSP 
Card: An All-in-One Communications System.) 

The guidelines in this report should be used in conjunction with the following documents: 

TMS320 Fixed-Point DSP Assembly Language Tools User's Guide 
TMS320C2xKSx Optimizing C Compiler User's Guide 

Hardware Platform Overview 

A model DSP hardware platform that will be used as a test and demonstration bed for various DSP 
applications consists of a PCMCIA type I1 card with an embedded 25-11s 'C51 digital signal processor and 
memory. This card complies with the PCMCIA UO card specifications. This card is capable of running in 
either standard or smart mode. In standard mode, the DSP is nonfunctional, and the card behaves like any 
other PCMCIA memory card. The host can switch the card into smart mode by writing a predetermined 
signature sequence to a memory location. In smart mode, the embedded DSP is active and executes code 
from the card memory. Memory available on the first version of this card is 192K words, mapped as 
multiple 64K pages in data and program spaces. 

There are two standard methods for data transfer and command handshake between the host and the DSP: 
the shared PCMCIA memory and a pair of dual-ported memory-mapped registers. The shared PCMCIA 
memory, when properly initialized by a PCMCIA card controller, acts like extended memory to the PC 
memory map. This is the preferred way of transfemng large blocks of code or data to and from the 
embedded DSP. Note that this mode of access may impose additional time constraints on the real-time 
execution of an application because the DSP halts while the PC is accessing the shared memory. 

Both the host and the DSP can read or write to the dual-ported memory-mapped registers that provide the 
other host-DSP interface. Access to these registers does not affect the normal operation of the DSP or the 
host processor. Both sides can poll special bit flags or enable themselves to be interrupted whenever the 
other side accesses these registers. This register-based communication link is especially suited for sending 
commands and occasional data parameters to the other end. This feature should be fully utilized by 
applications to pass results back to the host and let the host apply real-time control functions (such as mode 
change, start, stop, etc.) to the applications. 

For applications that require an analog interface to the outside world, a special connector is provided at the 
back end of the PCMCIA card; the connector can interface special peripherals to the DSP serial port or bit 
U0. Additionally, digital data can be sent over the serial link from an external processor or controller. The 
connector also supports a TI JTAG emulator (XDS-5 10) that facilitates application software debug directly 
on the card. 

This hardware platform overview is provided for illustration purposes only. The following discussion is 
equally applicable to any other 'C5x-based hardware platform. 

Software Organization 

It is strongly recommended that the following guidelines be observed to organize DSP application 
software. This will not only result in well-structured code, but it will also make the application easier to 
port to any other hardware platform. 



Organize each software application as a collection of modules or files that belongs to one of the following 
categories: 

Source Modules (*.c, *.asm): C or assembly source code files should not define any global 
constants or macros. 

Include Modules (*.h, *.inc): All include files for C modules must use file extension *.h, and 
all such files for assembly modules must use extension *.inc. Include files should define all 
global constants, macros, or variable types. They should not allocate memory or define 
functions, because this prevents them from being included by multiple source files. All functions 
and variables that form part of the overall interface to a *.c or *.asm file should be declared in 
a *.h or *.inc file. This provides a convenient overview of the interface and allows the compiler 
or assembler to check for errors. 

Linker Command File (*.cmd): This command file is used by the TI COFF linker to link multiple 
modules into a single executable COFF output file. 

Data Vectors (*.dat): These files should contain only data to be used for tests or algorithms. 
There must not be any code in these data files. These files, if used, will probably be included or 
copied (.include or .copy directives) in other source files or assembled as stand-alone modules. 

Make File (*.mak, *.prj): It is strongly recommended that you maintain a project make file that 
checks for any out-of-date target files and builds them automatically. Note that both Microsoft 
and Borland make-file utilities use mutually compatible file syntax. 

Organize source code files so that each file will fall under one of the categories shown in Figure 1: 

Figure 1. Categories of Source Code Files 

Core Routines: Include all software modules that implement the core algorithm. These routines 
should be independent of hardware-specific implementations. The only target-specific 



information that these routines should contain is the knowledge of the target DSP processor, in 
case the modules are in assembly language. Developers of independent applications may want 
to group these routines into additional categories on the basis of their functionality. 

Control Routines: These routines consist of all software modules that implement control 
functions. These control functions may include a C-like main function for program flow control, 
task handling and scheduling functions, interrupt service routines that pass control to core 
routines, a command handler that interprets host commands, and routines that initialize variables 
and tables. Some of these modules may contain some hardware-specific information, but their 
primary task is to control the program flow. They must not handle any inputloutput functions 
or external peripheral accesses. Note that interrupt service routines (ISRs) that handle on-chip 
or external peripherals must not be grouped here. The intention is to keep any modifications to 
these routines at a minimum when the software is ported to a new platform. 

Control Routines 

Task Scheduling Main Control Command Software 
Function Processing Initialization 
( main 0 ) 

Input/Output Routines: These routines should handle all the inputJoutput activities of the 
application, including accesses to any on-chip or external peripherals and YO ports. As an 
example, DSP code that handles host communication protocol falls under this category. A serial 
port ISR and other functions that access an 110-mapped external peripheral also belong to this 
category. It is recommended that each peripheral driver be arranged as one source file. 

Input/Output Routines 

External On-Chip Peripheral Host Interface Overlay 
Peripheral Drivers Drivers Drivers Memory Drivers 

Hardware Initialization Routines: In general, most nonhardware-specific initialization routines 
belong to the control routines category. However, since core routines must not have 
hardware-specific implementations, all functions that initialize external hardware such as 
external peripherals, host processor, etc., must be grouped separately. Note that these routines 
will differ from inputloutput routines in that they are invoked only once during system 
initialization. 

Test Routines: Application developers should provide a test procedure to verify functionality of 
their applications. This is especially important when an application is ported (or modified) to 
a different hardware platform. This test procedure can be in the form of a test program that calls 



different modules of an application separately to determine their integrity, or it can be in the form 
of input data vectors that can be processed by the application and output data vectors to be used 
for verification of the results. 

Memory Organization 

Proper memory organization is essential for application portability and maintenance. The following 
guidelines are mandatory: 

Addresses of data variables and tables should not be hard-coded. For example, you cannot use 
the .set directive to equate a label to an address. This is effectively a form of hard-coded memory 
allocation because variable addresses are determined during assembly time. The .usect, .sect, 
and other similar assembler directives should be used to allocate uninitialized and initialized 
variables. It is recommended that all variable definitions and allocations be done in separate 
files, as in the following examples: 

Var-addr .set 0800h **Hard-Coded Addr** 

Var-addr . usect "Section-name" , 1 **Addr Def. by Linker** 

If a peripheral is mapped to a unique address, then this mapping should be clearly identified in 
the linker command file. 

No assumption should be made about the type of COFF loader available to a host. In many cases, 
the host would not have access to a smart loader that can autoinitialize global variables during 
loading (similar to the -c option in the COFF linker). In other cases, an application can be 
preloaded in nonvolatile memory so that a loader is unnecessary. Therefore, an application 
should initialize all data variables during system initialization. One side effect of this restriction 
is that no initialized data can exist in data memory; all initialized tables and variables must be 
in program memory. They can be later copied to data memory, if necessary, by the software 
initialization module. This, however, implies that the total code size of an application will 
become larger than necessary. If the program size is getting unreasonably large because of this 
restriction, you can choose to ignore this restriction if your system loader can initialize data 
memory directly. In this case, all initialized data sections must be clearly identified in the linker 
command file. 

Avoid any restrictions on placement of variables and tables in memory, if possible. Occasionally, 
an application may require that restrictions be imposed on where a table can be placed in 
memory. This may happen because 1) a particular DSP feature (for example, bit-reversed 
addressing) demands it, or 2) it makes an algorithm implementation easier. Any such restriction 
should be clearly defined in the COFF linker command file in the form of extended comments. 

Global variables and local variables should be defined in separate sections. However, memory 
can be reused, and local variables of independent functions can occupy the same physical 
memory space when you use the GROUP and UNION linker directives (see the appendix for 
a sample linker command file). 

All code and data sections should be mapped to physical addresses during link time. In other 
words, the linker command file should be the only module in which absolute addresses are 
defined. 



If your application uses overlays or multiple memory pages, you should use the TI COFF linker 
syntax to define these overlays (see the appendix for an example linker command file). 
Additionally, you should write a driver module to be a part of the inputloutput routines that will 
handle the custom-defined memory overlaylpage control implementation. This driver module 
should comply with the following restrictions: 
- The module must be located in on-chip memory. This restriction is intended to guarantee 

that the DSP will not be accessing off-chip memory when bank-switching occurs. 
- Due to pipelining of instructions by the DSP, the next three instructions following a 

bank-switch instruction can still access the previous bank. To avoid this, you must make 
sure that the three instructions immediately following a bank-switch must not access the 
address range that corresponds to the switched memory bank. Note that if this driver module 
is called as a subroutine, then a return (RET) instruction immediately after the bank-switch 
will guarantee that the switch has occurred before the DSP fetches instructions from the new 
bank: 

Bank-Switch: ; bank switch routine 

out * , PA0 ; switch in new memory bank 

ret ; return to new bank 

Programming Guidelines 
Many DSP applications use mixed-mode (C and assembly) programming techniques to 
compromise between the need for efficient code and ease of programming. However, in some 
cases, an application may completely be written in DSP assembly language. In such cases, it is 
highly recommended that at least a dummy C main() function be written that simply transfers 
control to an assembly function. In this way, a basic C environment is automatically set up by 
main(), which leads to easier integration of any C functions in the future. If main() is the only 
C function in an application, then the rest of the functions need not adhere to C calling 
conventions. 

Many mixed-mode applications strictly follow the C convention for function calls, parameter 
passing, and variable allocation. However, you may need to avoid these constraints to efficiently 
implement some assembly-level functions. All such exceptions must be clearly identified and 
described in corresponding documentation. In some cases, when an assembly language function 
is called only by other assembly functions, context is not maintained across the function calls. 
These functions, although legal, must be clearly identified as non-C-callable functions to avoid 
any future maintenance problems. 

Self-modifying code should not be written. Such code is commonly used in interrupt vector 
tables (IVT), where one ISR can be patched for another during runtime. You can avoid this by 
using a software semaphore in ISR or by using an LAMhWBACC sequence to replace a more 
conventional B address sequence in IVT. The following interrupt vector table code example 
illustrates the use of an LAMhWBACC instruction to fetch the address of an ISR from a data 
memory location (in data page 0): 

INTI: l a m  INTI-Addr 

bacc 



For relocatable sections of code, do not use the .asect directive. Instead, use the runtime and 
load-time address options of the TI linker. This emphasizes our strategy of not allowing absolute 
addresses in assembly modules. Note that the .asect directive requires an absolute address to be 
specified as a parameter. 

Avoid using numerical constants as instruction parameters. Code listings are more readable 
when constants are replaced by meaningful labels. You can do this with the .set directive, as 
shown in the following example: 

replace: 

add #07FFFh 

with: 

One-Q15 .set 07FFFh 

add #One-Q15 

Source Code Documentation 
All source modules, whether in assembly or C, must maintain a modification history table that 
lists the date and time of each modification in chronological order, the person who made the 
change, and a brief description of the change. 

Line-by-line comments are highly recommended, especially for assembly language modules. 
All functions in a module, whether assembly or C, must clearly describe the 
implementation-specific details of the function. 

All functions should be preceded by a function header that gives the function description. input 
and output parameter lists, global variables used, a list of nested function calls, a list of functions 
that can call this function, and entrylexit conditions. Note that entry and exit conditions are 
especially important for assembly functions because processor context is not often maintained 
across function calls. 



Appendix: A Sample Linker Command File for the 'C5x Card 

The following linker command file is listed here to illustrate how to use the TI COFF linker syntax to define 
overlays and multiple codeldata pages for the 'C5x PCMCIA card version 1 .O. This command file would 
require minimum modifications to adapt to any 'C5x application running on this PCMCIA card. 

PCMCIA 'C5x Card Memory Map: version 1.0 

At reset, page 0 is in the 'C5x program space and page 1 is in data space. 

If page 2 is enabled, it is dual-mapped in both program and data spaces. Each 
application must carefully divide page 2 into two or more sections, and each 
section must be considered as either program or data, but not both. In the 
following example, the PRAM2 section is mapped as program, and the RAMEXT2 
section is mapped as data, but this can be modified by an application. 

The RAMSA and RAMDA memory blocks (in both page 0 and page 1) are defined as 
overlays. This means that runtime addresses of multiple code and data 
sections can be bound to these overlay sections. Note, however, that you must 
copy any initialized section to an overlay area before it can be used. 

All pages are 64K words in length. 

Program 
0000 - - - - - - - - 

I  I  
I  I  
I  PRAM I  
I  I 
I I  

2000 / - - - - - - I  
1 RAMSA I  

2400 1- - - - - - I  
I  I  
I  RAMEXT I  
I  I  

FEOO 1- - - - - - I  
1 RAMDA 1 

FFFF -------- 
Page 0 

0000 

0060 

007F 

0100 

0500 

0800 

OCOO 

FFFF 

Data 
- - - - - - - - 

I  XXXXXXXXXX I 

I  XXXXXXXXXX I  
1 _ _ _ _ _ _ 1  
1 RAMDA I 
I _ _ _ _ _ - /  
I  XXXXXXXXXX I  
I _ _ _ _ _ _ _ /  
I  RAMSA I  
I  I  I I  

I  I 
FFFF - ------- 

Page 2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MEMORY 

page 0 : / *  Program Only * /  
PRAM : origin = 00000h, length = 02000h 

RAMSA : origin = 02000h, length = 00400h / *  Overlay Section * /  

RAMEXT: origin = 02400h, length = ODAOOh 

RAMDA : origin = OFEOOh, length = 00200h / *  Overlay Section * /  
page 1 : / *  Data Only * /  



RAMB2 : origin = 00060h, length = 00020h 

RAMDA : origin = 00100h, length = 00400h / *  Overlay Section * /  

RAMSA : origin = 00800h, length = 00400h / *  Overlay Section * /  

RAMEXT: origin = OOCOOh, length = OF400h 

page 2 : / *  Dual-Mapped in Program and Data * /  

PRAM2 :origin = 00000h, length = 02000h / *  Contains Code * /  

RAMEXT2:origin = 02000h, length = OEOOOh / *  Contains Data * /  

1 
SECTIONS 

{ 

PROG1: load = PRAM Page 0 

{ 

fl.obj(.text) 

1 
PROG2: load = PRAM2 page 2 

£2.obj(.text) 

1 
DATA1: load = RAMEXT page 1 

{ 

fl.obj(.data) 

} 

DATA2: load = RAMEXT2 page 2 

{ 

£2.obj(.data) 

1 
UNION : run = RAMSA page 0 / *  Overlay Section: * / 

{ / *  £3 and f4 functions * /  

.text1 : load = RAMEXT page 0 / *  will be copied and * /  

{ / *  run from RAMSA page0 * /  

£3.obj(.text) 

1 
.text2 : load = RAMEXT page 0 

{ 

fl.obj(.text) 

1 
1 
UNION : run = RAMDA page 0 

{ 

/ *  Overlay Section: * / 
/ *  f5 and f6 functions * /  



.text3 : load = RAMEXT page 0 / *  will be copied and * /  

{ / *  run from RAMDA page0 * /  
f5.obj(.text) 

1 
.text4 : load = PRAM page 0 

{ 

f6.obj(.text) 

1 
1 
UNION : run = RAMSA page 1 

{ 

.bssl : 

{ 

/ *  Overlay Section: * / 
/ *  local variables of * /  
/ *  f3 and f4 functions * /  

/ *  overlay each other * /  

/ *  in RAMSA page 1 * / 
1 
.bss2 : 

{ 

fl.obj(.bss) 

1 
1 
UNION : run = RAMDA page 1 

{ 

.bss3 : 

{ 

/ *  Overlay Section: * / 
/ *  local variables of * /  

/ *  f5 and f6 functions * /  

/ *  overlay each other * /  

/ *  in RAMDA page 1 * / 





TCM320A C3x/4x 
Voice-Band Audio Processors 

Greg Davis 
Russ MacDonald 

Advanced Linear Applications - Semiconductor Group 
Texas Instruments Incorporated 





Introduction 

The voice-band audio processor (VBAP) family of devices is a line of highly specialized single-supply 
voice codecs specifically designed for use in battery-powered personal communications systems. The 
VBAPuses the TI LinEPICZl 1 -ym semiconductor process, which results in very low power consumption. 
In addition, a patented TI process is used to maintain extremely low noise specifications. The VBAP device 
serves as an interface between a voice and a DSP and incorporates three major functions: transmit encoding 
( A D  conversion), receive decoding (DIA conversion), and transmit and receive filtering. The VBAP 
family supports a serial data connection in either %bit companded y-Law or A-law mode, and a 
pin-selectable 13-bit linear conversion mode. The VBAP utilizes sophisticated switched capacitor filters 
to provide filtering that is compatible with most personal communication specifications, including the 
EIA/TIA/IS-54 for U.S. digital cellular telephones and the CCITT G.711 and G.712 y-law and A-law 
filtering requirements. The VBAP also provides direct microphone and speaker interface. 

VBAP devices are available in 20-pin N (dual in-line plastic) and DW (surface mount) packages, as well 
as soon-to-be-introduced QFP (quad flat pack <20-mm) packages. 

Figure 1. VBAP Functional Block Diagram 
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NOTE: fc is the -3-dB cutoff frequency. 



Principles of Operation 

To minimize crosstalk, the VBAP design utilizes independent converters, filters, and voltage references 
for the transmit and receive channels. Figure 1 shows a typical VBAP functional diagram with these 
features. 

Transmit Channel 

Microphone interface 
A reference voltage equal to VDD/2, called VMID, is used to develop the midlevel virtual ground for all 
amplifier circuits and the microphone bias circuits. Any power supply noise on VMID would normally be 
detected on the output of the VBAP; therefore, VMID is brought to an external pin so that the voltage can 
be filtered by using an external capacitor. The optimum capacitor combination is a 1-yF ceramic type in 
parallel with a 470-pF ceramic chip cap. A reference voltage at the MICBIAS pin can be used to supply 
bias current for the microphone. Because MICBIAS is also used internally to bias the microphone 
amplifier, the common-mode rejection results in a quiet bias voltage. For this reason, it is recommended 
that you use MICBIAS to bias only an electret microphone, as shown in Figure 2. 

The microphone input signal (MICIN) is buffered and amplified with provision for setting the amplifier 
gain to accommodate a range of signal input levels. This is accomplished by changing the value of the series 
capacitor and feedback resistor of the (uncommitted) microphone-inverting amplifier. While the 
configuration shown in Figure 2 will suit most applications, the steady-state impedance of the electret 
microphone and the 2-kQ microphone bias resistor can be converted to a Thevenin's equivalent voltage 
source with a series impedance to calculate the microphone amplifier gain. A resistor can also be added 
in series with the 0.33-pF capacitor at the amplifier input to decrease the amplifier gain. Note that the 
0.33-yF capacitor, along with the 2-kQ resistor, yields a high-pass filter with a -3-dB cutoff of 240 Hz and 
-0.6 dB cutoff at 300 Hz, which is acceptable for voice-band communications. 

Figure 2. VBAP Microphone Connection 
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Microphone Mute 
The microphone mute function disables the microphone amplifier, and the input to the transmit filters is 
placed in a high-impedance state. With MICMUTE enabled, the output of the microphone amplifier is more 
than 80 dB down from the signal on MICIN (microphone input), and the digital circuitry will transmit zero 
code on DOUT. In addition, the VMID buffer is disabled, and the MICBIAS output is zero. 

Transmit Filters 
The amplified signal is passed through antialiasing and band-pass filters. The antialiasing filter is an analog 
(continuous time) first-order low-pass filter with a cutoff of 20 kHz and is used to attenuate any modulation 
components above half the sampling frequency of the next stage to avoid aliasing artifacts (Nyquist 
sampling theorem). The next stage is a switched capacitor filter with a sampling rate of 256 kHz, so the 
antialiasing filter provides a greater than 35-dB attenuation at half that sampling frequency, or 128 kHz. 

The band-pass filters are composed of oversampled switched capacitor filters to avoid the effects of 
aliasing. The first band-pass filter is a sixth-order low-pass filter with a cutoff of 3.5 kHz, and the second 
is a first-order high-pass filter with a cutoff of 100 Hz, sampled at 256 kHz and 8 kHz, correspondingly. 
The effective 0-dB bandpass of thesefilters is from 300 Hz to 3.4 kHz. Because of the oversampling and 
because the clocks used by both these filters are synchronous, antialiasing products can be easily controlled 
and virtually eliminated. 

Encoding (AID Conversion) 
The encoded data word structure is available in two formats: companded and linear conversion. The 
formats are pin selectable. When the device is in the companded mode, the analog signal is sent to the 
transmit filters and then input to a compressing analog-to-digital converter (COADC). The analog signal 
is encoded into 8-bit digital representation via the p-Law and A-Law encoding scheme according to CCITT 
G.711; this equates to 12 bits of resolution for low-amplitude signals. When the linear conversion mode 
is selected, 13 bits of data are sent, padded with 0s to provide a 16-bit word. Both companded and linear 
conversion modes use 2s-complement words. 

Data can be transmitted in either a fixed or variable data rate mode. See Fixed and Variable Data Rate 
Modes on page 266 for more detail. 

The encoder internally samples the output of the transmit filter at the middle of the frame and holds each 
sample on an internal sample-and-hold capacitor. The encoder performs an analog-to-digital conversion 
(on a switched capacitor array), also starting in the second halfof the frame. To minimize the delay across 
the VBAP, the actual conversion process does not complete until just before the next frame. Digital data 
representing the sample is then transmitted at the start of the next frame. The transmit data is output on the 
DOUT pin. Transmit data is clocked out on consecutive positive transitions of the transmit data clock, 
which is CLK in the fixed-data-rate mode and DCLKR in the variable-date-rate mode. 

The master-clock-to-frame-sync ratio is critical and cannot be violated. Refer to Timing and Clocking on 
page 265 for more detail. 

For both companded and linear modes, the sign bit is transmitted first, followed by the MSB, with the LSB 
transmitted last. 

Since the A D  conversion rate is the master clock, and the band-pass switched capacitor filter clocks are 
integer submultiples of the master clock, unwanted aliasing products are prevented. 

Transmit Auto Zero 
The auto zero circuit corrects for any DC offset on the input signal to the encoder by using a sign-bit 
averaging technique. The sign bit from the encoder output is long-term averaged and subtracted from the 



input to the encoder. This acts as a form of feedback to track and correct for changing DC offsets. The auto 
zero circuitry is implemented after the high-pass transmit filter so that it will not mistakenly track 
low-frequency audio signals. The response time of the auto zero circuitry is about five frames from device 
power-up, or from standby to active. 

Noise-Reduction Algorithm 

The VBAP transmit circuitry incorporates patented TI circuits to reduce transmit noise to extremely low 
levels. These circuits reduce the transmit audio when the analog input falls below a set level; they are used 
in the companded mode only. The levels at which the noise reduction circuits are enabled include hysteresis 
for further improved performance; these levels are about -55 and -60 dB. When the VBAP detects these 
low audio input conditions, it puts out a zero code (1 11 1 11 11 in p-Law and 0 101 0101 in A-Law, according 
to CCITT G.711 specifications). This is different from the normal output under idle channel noise 
conditions, which typically consists of a random sequence of codes around 0 (LSB and/or second LSB and 
MSB sign bit toggling arbitrarily). 

Receive Channel 

Decoding (DIA Conversion) 

Data can also be received in either a fixed or variable data rate mode. See Fixed- and Variable-Data-Rate 
Modes on page 266 for more detail. 

In the companding modes, the serial data word is received at DIN on the first eight clock cycles in the 
fixed-data-rate mode or the last eight clock cycles in the variable-data-rate mode. The decoding section 
converts the 8-bit PCM data into an analog signal with 12 bits of dynamic range, according to CCITT G.7 11 
specifications. In the linear mode, the serial data word is received in the first 13 clock cycles. In both the 
companded and linear modes, input data is clocked in on consecutive negative transitions of the receive 
clock, which is CLK in the fixed-data-rate mode and DCLKR in the variable-date-rate mode. 
Digital-to-analog conversion is performed, and the corresponding analog sample is held on an internal 
sample-and-hold capacitor. The sample is then transferred to the receive filter during the next frame. 

Receive Filters 

The receive filter is a switched capacitor sixth-order low-pass filter with a cutoff of 20 kJ3z; it provides 
pass-band flatness and stop-band rejection that fulfills both the AT&T D31D4 specifications and the CCITT 
recommendation for G.712. The filter also contains the (sinx)/x correction response of such decoders. 

Receive BufferNolurne Control 

The receive buffer contains the volume control circuitry. When data is received in the linear mode, the 13 
bits are read as data, and the remaining 3 bits are used as programmable volume control of the analog output. 
These volume control bits originate from a DSP or other device that is interfaced with the VBAP, and they 
serve to attenuate the speaker output of the VBAP in seven 3-dB steps. The volume control bits are not 
latched into the VBAP, so they must be present in each received data word. If they are missing, the VBAP 
circuitry will assume that the three volume control bits are 0 (0-dB attenuation). In the companded mode, 
programmable gain is not used. Table 1 illustrates the volume control bits required for a given attenuation. 



Table 1. Receive-Channel Volume-Control Bits 

NOTE: The first bit is the MSB. 

Bits 14-16 in DIN Input Data 
Stream 
000 
001 
01 0 
01 1 
100 
101 
11 0 
111 

Speaker Amplifier Overview 

The VBAP incorporates an analog output power amplifier. This amplifier can drive transformer hybrids 
or low-impedance loads directly in either a differential or single-ended configuration. In addition, the 
VBAP speaker output stage (in its differential configuration) allows for further volume control (in addition 
to the volume control bits), by connection of a resistor chain to the output terminal of the device. 

Resulting Receive Channel 
Attenuation 

0 dB 
-3 dB 
-6 dB 
-9 dB 
-12 dB 
-15 dB 
-18 dB 
-21 dB 

The speaker amplifier output will typically assume a DC offset of approximately 40 mV. This is a normal 
consequence of using switched capacitors in the VBAP design. Potential biasing problems can be avoided 
by the use of an AC coupling capacitor. 

Timing and Clocking 

Master Clock and Frame Sync 

The VBAP requires a master clock and frame sync. The master clock is used for many internal functions, 
most notably to clock the switched capacitor filters and the AID-D/A conversion process in both the 
transmit and receive directions. The VBAP family (TCM320ACxx) accommodates a variety of master 
clock frequencies, as shown in Table 2. 

Table 2. VBAP Master Clock Frequencies 

Device Suffix (xx) 
36, 37, 46 

39 

4 1 

42 

44 

Master Clock (MHz) 
2.048 

2.6 

1 .I52 

1.944 

1.536 



Power-Down and Standby Operations 

To minimize power consumption, a power-down mode and three standby modes are provided. 

For power-down, an external low signal is applied to PDN. In the absence of a signal, PDN is internally 
pulled up to a high logic level, and the device remains active. In the power-down mode, the average power 
consumption is reduced to 1.25 mW. 

The standby modes give you the option of putting the entire device on standby or putting only the transmit 
or receive channels on standby. The standby modes are entered by removing one or both of the frame syncs. 
Table 3 illustrates all VBAP modes of operation. 

Table 3. Power-Down and Standby Procedures 

Power down PDN = low TSX and DOUT in a high-impedance 
FSXIFSR = X/X 1 mW / state 

Device Status 

Power on 

Entire device on 
standby 

Receive only 
(transmit standby) 

Procedure 

PDN = high 
FSX = pulses 
FSR = pulses 

FSX = low 
FSR = low 
PDN = high 

FSX = low 
FSR = pulses 
PDN = high 

TSX and DOUT in a high-impedance 
state 

Typical Power 
Consumption 

40 mW 

TSX and DOUT in a high-impedance 
state within 5 frames 

Digital Output Status 

Active 

Fixed- and Variable-Data-Rate Modes 

Transmit only 
(receive standby) 

The VBAP is designed to operate in both the fixed and variable-data-rate modes. The mode of operation 
is pin selectable. In the fixed mode, the data is transmitted (or burst) and received at the rate of the master 
clock frequency and is sampled every frame. In the variable-data-rate mode, the data is transmitted or 
received at a rate slower than the master clock frequency and uses the data clock input DCLKR. 

For example, suppose you are using the TCM320AC36 VBAP in the 8-bit companded mode and 
variable-data-rate configuration. This VBAP has a master clock frequency of 2.048 MHz and must use a 
frame sync of 8 kHz to maintain a 256 master-clock-to-frame-sync ratio. The data is sampled every 125 
ps, but the speed at which the data is transmitted (or burst) and received, each 125 ys, can vary from 2.048 
MHz to 64 kHz. Notice that the slowest speed of the data clock is 64 kHz; any slower speed would not allow 
a full 8-bit sample to be performed before the next frame begins. At 64 kHz, the complete frame is used 
to transmit or receive the data (8 bits x 8000 = 64 kbps). Likewise, the minimum variable-data-rate speed 
for the 16-bit linear mode would be 128 kHz (16 kHz x 8000). 

FSR = low 
FSX = pulses 
PDN = high 

20 mW Active 



Application Information 

VBAP interfaced to a DSP 

The most common application for the VBAP is as an interface to a DSP. The VBAP performs the 
analog-to-digital and digital-to-analog conversions, along with filtering, while the DSP performs more 
complex functions with the encoded speech. For example, in a cellular telephone application, the DSP 
would typically perform equalization and speech coding through the use of algorithms (code) executed by 
the DSP. The circuit in Figure 3 illustrates a typical VBAP-to-DSP interface. 

Figure 3. VBAP Interfaced to a 'C5x DSP 
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Device Power-Up Sequence 
The VBAP should be powered up and initialized as follows: 

1. Apply GND 

2 .  Apply VDD 
3. Apply low to PDN bar 
4. Connect master clock 
5. Connect data clock (if used) 
6. Remove low to PDN bar 
7. Apply FSX andlor FSR synchronization pulses 

Grounding and Decoupling 
Use a ground plane on the PCB, covering as much unused area as possible. 

Bypass the VBAP with a high-quality 0.1-pF ceramic capacitor (such as a CK05) directly across the VBAP 
power supply pins. Ceramic capacitors have a low ESR (equivalent series resistance) or high Q; they are 
able to react to fast changes in voltage and are used to suppress high-frequency transients. High-frequency 
voltage transients result from instantaneous high current consumption during digital device switching. 
Since all power supplies have an internal impedance that prevents infinite current sourcing, power supply 
voltage ripple, or noise, will result. Capacitive loading on the power supply rail regulates the voltage of 
the supply. 

Any power supply noise on VMID would normally be detected on the output of the VBAP; therefore, 
VMID is brought to an external pin so that the voltage can be filtered by using an external capacitor. The 
optimum capacitor combination is a 1-pF ceramic in parallel with a 470-pF ceramic chip cap. 

Power Supply 
A voltage regulator should always be used, even with battery power. Batteries in particular have a high 
internal impedance that allows the DC voltage to vary under instantaneous current consumption during 
digital switching. The resultant change in voltage manifests itself as noise on the power supply rail. 

Use a 10-pF capacitor across the power supply rails on the PCB. This serves the same purpose as the 
ceramic capacitor, except that it responds well to lower frequency transients. 

All power supply traces should be as close as possible to the ground plane. Proximity to the ground plane 
adds parallel capacitance. 

Variable Data Rate at Master Clock Frequency 
In some applications, it is desirable to run the VBAP in the variable-data-rate mode at a data rate equal to 
the master clock speed. This gives you the advantage of using the variable-data-rate mode (as with repeated 
data while frame sync is high) while still running the maximum data rate as in the fixed-data-rate mode (in 
fixed-data-rate mode, the data clock is internally run at the master clock speed). 

If the device is operated in the variable-data-rate mode with the data clock run at the master clock frequency, 
the DCLKX and MCLK pins cannot be directly connected externally. If you choose to use the master clock 
as the DCLKX, you must buffer the output of the master clock before connecting it to DCLKX. This is 
necessary because the VBAP always powers up in the fixed-data-rate mode, and for the first several clock - - 
cycles, the DCLKX pin is actually an output (TSK) as defined in the data sheet. The TSX output is a 
transmit time strobe that will pull the MCLK pin low; this will corrupt the MCLK input, if MCLK and 
DCLKX are directly connected externally to the device. Only after the first several master clockcycles does 
the device assume a fixed-data-rate mode and the DCLKX pin become an input. Therefore, the suggested 
method is to join MCLK and DCLKX before a buffering stage for the DCLKX line. 



Typical PCM Output Expected From a Transmit VBAP 

In an ideal situation, the 8- (and 13-bit) AD converter in the VBAP is designed with a noise floor that 
equates to the transition of half the LSB. In the linear mode, a half bit represents approximately -75 dB, 
as shown below: 

20 X log 213 = -75 dB ["I 
This corresponds to the VBAP data sheet, which specifies the transmit noise in linear mode to be -74 dB. 
Therefore, using a VBAP in the receive mode, configured for a maximum output signal of 4 volts 
peak-to-peak (Vp-p which is equal to 1.414 V,,), the VBAP would encode this half bit of noise and 
experience about 250 pV,, of noise on the speaker output terminals, as in this equation: 

-75 dB = 20 x log A 
1.4 1 4v,, (2) 

where X = output that is 75 dB down from 1.414 V,, (that is, X = 250 pV,,). 
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TMS320 Bibliography 

Since TMS32010 was disclosed in 1982, the TMS320 family has received ever-increasing recognition. The 
number of outside parties contributing to the extensive development support offered by Texas Instruments 
has grown significantly. Many technical articles are being written about TMS320 applications in the field 
of digital signal processing. 

To keep TMS320 designers aware of new applications and developments related to the TMS320 DSPs, 
Texas Instruments has published extensive bibliographies of TMS320-related conference papers and 
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