
Telecommunications Applications
With the TMS32OC5x DSPs

Edited by Mansoor A. Chishtie

Digital Signal Processing Applications - Semiconductor Group
Texas Instruments Incorporated

IMPORTANT NOTICE

Texas lnstruments (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its
customers to obtain the latest version of relevant information to verify, before placing
orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the
specifications applicable at the time of sale in accordance with Tl's standard warranty.
Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT
APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the
customer. Use of TI products in such applications requires the written approval of an
appropriateTI officer. Questions concerning potential risk applications should be directed
to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards should be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI
warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used.

Copyright O 1994, Texas lnstruments Incorporated

Preface

This book belongs to a growing series of digital signal processing application books that Texas Instruments
has published over the years. Some of these books are broad in content and cover a wide variety of
DSP-related technologies and applications. Others are more focused and concentrate on one DSP
application area. TI has also published many individual application reports. This particular collection of
application reports focuses primarily on a variety of DSP applications that are related to the field of
telecommunications and implemented on the 'C5x generation of the TMS320 family.

This book is divided into nine parts, including the introduction and the bibliography:
Part I Introduction

Part I1 Digital Cellular Systems

Part I11 Speech Synthesis

Part IV Error-Correction Coding

Part V Baseband Modulation and Demodulation

Part VI Equalization and Channel Estimation

Part VII Speech and Character Recognition Algorithms

Part VIII System Design Considerations

Part IX Bibliography

Part I introduces the TMS320 family and the TMS320C5x generation; it also summarizes various
telecommunications applications that use TMS320C5x DSPs. Parts I1 - VIII discuss major application
topics.

Most of the papers presented here are application reports written either by the engineering staff of the TI
digital signal processing department (including factory and field personnel and summer students) or by
third parties. Some of the papers were contributed by other departments within TI. It is generally assumed
that reader is DSP literate and has some exposure to the TMS320 DSP family.

The application reports presented in this book represent practical implementations of DSP algorithms.
Source code associated with these reports is not listed in this book because of space constraints. However,
most of the papers have associated source code that is publicly available from the TMS320 DSP Bulletin
Board System (BBS) at 713-274-2323. The contents of this BBS are also mirrored at an Internet
anonymous FTP site ticom. Some technical papers included here present commercial implementations that
are licensable from respective organizations. The technical data sheets of these implementations will also
be included in a future update of the TMS320 Software Cooperative Library.

The editor would like to thank all the contributors and reviewers of this book. In particular, a special note
of appreciation goes to Gene Frantz, Jay Reimer, Raj Chirayil, and Paul Buenaflor for their encouragement
and helpful suggestions in improving the overall structure of this book. It is our hope that this book will
help you in making the transition to DSP-based telecommunication applications. Lastly, the editor would
like to acknowledge the untiring efforts of Ms. Katie Delbridge in planning and coordinating this project.

Mansoor A. Chishtie
Telecom Applications

Digital Signal Processing
Semiconductor Group

Texas Instruments Incorporated

Contents
Title Page

Part I: Introduction

... Introduction 1
Overview . 3
Programmable Versus Hard-Wired Solutions . 3
Fixed-Point Versus Floating-point Solutions . 4
TMS320 Digital Signal Processors . 5
TMS320C5x Architecture . 7
Summary of Telecom Applications Topics . 9

. Bibliographies and Other References 10

Part 11: Digital Cellular Systems
... Digital Cellular Phone: A Functional Analysis 11

Introduction . 13
. Transmitter 14

Receiver . 24
Summary . 29

. References 29

IS-54Simulation .. 31
Introduction . 33
Description . 35
UsingtheSimulation . 39

. CodeAvailability 40
. References 40

Part 111: Speech Synthesis

Theory and Implementation of the Digital Cellular Standard Voice Coder:
.. VSELPontheTMS320C5x 41

. Introduction 43
. OvemiewofVSELP 43

. SpeechDecoder 57
. FeaturesofVSELP 59

. TMS320C5x Real-Time Implementation 59
. A Typical Digital Cellular Vocoder Configuration 60

. CodeAvailability 61
. References 61

Contents
Title Page

Part IV: Error-Correction Coding

U.S. Digital Cellular Error-Correction Coding
Algorithm Implementation on the TMS320C5x 63
Abstract . 65
Introduction . 65

. VSELPChannelFormat 66
FACCHChannelFormat . 73
CodeAvailability . 75

. References 75

.............................. Viterbi Implementation on the TMS320C5x for V.32 Modems 77
. Introduction 79

. StandardV.32Encoder 82
ViterbiDecoder . 85

. Viterbi Decoder Implementation 90
. PerformanceAnalysis 96

Summary . 100
CodeAvailability . 100
References . 101

A TMS320C53-Based Enhanced Forward Error-Correction Scheme for
... U.S. Digital Cellular Radio 103

Abstract . 105
Introduction . 105
AlgorithmDescription . 105

. Implementation Details 107
Results . 108
Conclusions . 109
References . 109

Part V: Baseband Modulation and Demodulation

IS-54 Digital Cellular Modem Implementation on the TMS320C5x 111
Introduction . 113

. Description of nI4-QPSK Modulation Scheme 113
. Theory of the n/4-DQPSK Modem 115

. Modem Implementation on the TMS320C5x 119
. Performance Results 126

Summary . 129
CodeAvailability . 129
References . 130

Contents
Title Page

..................... A DSP GMSK Modem for Mobitex and Other Wireless Infrastructures 131
. Abstract 133

. Introduction 133
. Mobitex DSP Modem Characteristics 135

. Modulator Design 137
. GMSK Demodulator Design 140

. Conclusions 144
CodeAvailabilit~ . 144

. References 145

Part VI: Equalization and Channel Estimation
.. Equalization Concepts: A 'Ibtorial 147

. Introduction 149
. What Is Intersymbol Interference? 149

Equalization . 159
LMSEqualization . 167

. CodeAvailability 174
References . 174

Channel Equalization for the IS-54 Digital Cellular System With the TMS320C5x 177
Introduction . 179

. Design Considerations 179
EqualizerDesign . 183
ChoosinganUpdateAlgorithm . 186
CodeAvailability . 187
References . 187

.......................... Digital Voice Echo Canceler Implementation on the TMS320C5x 189
Introduction . 191

. 'C5x Device Features Used in This Implementation 191
Conclusion . 201

. Acknowledgements 201
. CodeAvailability 201

References . 201
. Appendix: Schematic of the Dual-Telephone Interface for the TMS320C5 1 SWDS 202

Contents
Title Page

Part VII: Speech and Character Recognition Algorithms
.. DSP-Based Handprinted Character Recognition 203

. Introduction 205

. Architecture 206
System-Levelsoftware . 207
Results . 211
References . 212

Implementation of an HMM-Based, Speaker-Independent Speech Recognition System
ontheTMS320C2xandTMS320C5x ... 213
Abstract . 215
Background . 215

. The TMS320-Based HMM Recognizer 215
SystemConsiderations . 218
Conclusion . 226

....................... Automated Dialing of Cellular Telephones Using Speech Recognition 229
Introduction . 231
TheTechnology . 231
TheHumanInterface . 232

. The Implementation 233
Accuracy . 234

. Code Availability 235
Summary . 236

Part VIII: System Design Considerations
......................... The PCMCIA DSP Card: An All-in-One Communications System 237

Introduction . 239
SystemArchitecture . 240
Operation . 242

. Conclusion 245

.. Software Coding Guidelines for 'C5x Developers 247
Introduction . 249

. Hardware Platform Overview 249
Softwareorganization . 249
MemoryOrganization . 252

. Programming Guidelines 253
. Source Code Documentation 254

. Appendix: A Sample Linker Command File for the 'C5x Card 255

Contents
Title Page

... TCM320AC3xJ4x Voice-Band Audio Processors 259
Introduction . 261

. Principles of Operation 262
. Transmit Channel 262

. Receive Channel 264
. Timing and Clocking 265

. Fixed- and Variable-Data-Rate Modes 266
. Application Information 267

Part IX: Bibliography
.. Bibliography 271

. TMS320 Bibliography 273

. Mobile Radio Systems 273
. Modulation and Demodulation 274

. Equalization. Channel Estimation. and Adaptive Filtering 274
. SpeechRecognition 275

SpeechCompression . 276
. System Design Considerations 280

Figure
List of Illustrations

Title Page

Viterbi Implementation on the TMS320CSx for V.32 Modems 77
1 . V.32Modems . 81
2 . V.32 Encoder . 82
3 . Viterbi Encoder - Convolutional Encoding Scheme . 83
4 . V.32 Modem Trellis Diagram . 84
5 . Viterbi Decoding - Output Tracking and Cost Function . 86
6 . V.32 Modem - Signal Element Mapping . 87
7 . Viterbi Decoding - Dynamic Programming . 88
8 . V.32 Encoder Program Flow . 89
9 . Decoder Flowchart . 90
10 . Delay State Linking . 93
11 . 128-Word Circular Buffers - Format of PAST-PATH

and PAST-DLY Tables . 94
12 . DIST Table Structure . 95
13 . White-Noise Impairment - Simulation Results . 98

A TMS320C53-Based Enhanced Forward Error-Correction Scheme for
U.S. Digital Cellular Radio ... 103

1 . IS-54 Voice-Channel GVA Algorithm . 106
2 . Simulated Bit Error Rate of Serial GVA Versus VA . 108
3 . State Path History Trace . 109

IS-54 Digital Cellular Modem Implementation on the TMS320CSx 111

1 . ~14-Shifted QPSK Signal Constellation . 114
2 . Modulator Block Diagram . 116
3 . Demodulator Block Diagram . 117
4 . Interruptorganization . 119
5 . Modem Test Configuration . 127
6 . BER Versus SNR for a Static AWGN Channel . 128

A DSP GMSK Modem for Mobitex and Other Wireless Infrastructures 131

1 . Typical Mobitex Terminal Architecture . 134
2 . Bit Error Rate Versus E g o Modem Performance . 136
3 . Idealized GMSK.3 Generation . 137
4 . Eye Pattern for 8-kbps GMSK.3,215- 1 Length

PseudorandomTransmitData . 138
5 . GMSK Modulator DSP Implementation . 138
6 . GMSK Demodulator DSP Implementation . 140
7 . Mobitex Packet Structure . 142
8 . Computer-Simulated Eye Pattern for a 19.2-kbps GMSK.5

(Amplitude Versus Time) . 143

List of lllustrations
Figure Title Page

.. Equalization Concepts: A Tutorial 147
. . 1 A Pulse Train to Be Transmitted 151

. 2 . Componentofr(t) 152
. 3 . Contribution Due to x- 1 153

. 4 . Contribution Due to xl at t = 0 154

. 5 . Set of Shifted Pulse Responses 155
. 6 . Odd Symmetry 156

. 7 . Spectral Response at 1/(2T) 156
. 8 . Time Response of the Raised Cosine Signal 158

. 9 . Transmission Process With Example Pulse Responses 159
. 10 . Case 1: Ideal Channel, No Multipath Effects 160

. 11 . Case 2: System With a Single Unattenuated Multipath Channel 161
. 12 . Equalization Process 162

. 13 . Simulated Pulse Response 163
. 14 . ZFE Filter Coefficient 166

. 15 . Filter Output Computation 168
. 16 . Decision-Directed Equalization 170

. 17 . Received Signal Including Additive Noise Effects 171
. 18 . DFE Functional Block Diagram 172

Channel Equalization for the IS-54 Digital Cellular System With the TMS320CSx 177
. 1 . x14 DQPSK 180

. . 2 Multipath Interference 181
. 3 . Rayleigh Fading 182

. 4 . Intersymbol Interference: Interferer Level -3 dBc 183
. 5 . Block Diagram of a Decision-Feedback Equalizer 185

. 6 . Equalizer Taps Responding to a Fade 186
.. DSP-Based Handprinted Character Recognition 203

. . 1 Prototype HHC Platform With Pen Input 206
. 2 . DSP Card Memory Organization for HCR 209

Implementation of an HMM-Based, Speaker-Independent Speech Recognition System
... on the TMS320C2x and TMS320CSx 213

. 1 . Voice Dialer Sentence Hypothesizer Flow Chart 216
. 2 . A Minimal TMS320C53 HMM System 220

. . 3 Example of an HMM Flow 221
. 4 . Block Diagram of the HHM Recognizer 222

. 5 . The Feature Extractor 223
. 6 . Example of Q q I 6 Notation 225

. 7 . SISR System for Very Large Vocabulary 226

List of Illustrations
Figure Title Page

Automated Dialing of Cellular Telephones Using Speech Recognition 229
. 1 . Flow Diagram of Human Interface 233

The PCMCIA DSP Card: An All-in-One Communications System 237
. 1 . DSP Card Block Diagram 239

. . 2 DSP Card Architecture 241
3 . Loading and Executing a Single Algorithm . 244

Software Coding Guidelines for 'C5x Developers .. 247
. 1 . Categories of Source Code Files 250

TCM320AC3xI4x Voice-Band Audio Processors ... 259
. . 1 VBAP Functional Block Diagram 261

. 2 . VBAP Microphone Connection 262

. 3 . VBAP Interfaced to a 'C5x DSP 267

Table
List of Tables

Title Page

Introduction ... 1

1 . Benefits of TMS320C5x Features . 7

Digital Cellular Phone: A Functional Analysis .. 11
1 . Basic Parameters of a VSELP Speech Coder . 15
2 . Bit Allocations Within a Frame of Speech . 16
3 . Detailed Bit Allocations of Parameters Within a Frame . 16

. . 4 Interleaving of Two Adjacent Speech Frames, x and y 19

Theory and Implementation of the Digital Cellular Standard Voice Coder:
VSELPontheTMS320C5x .. 41

. . 1 Primary VSELP Parameters 44
. 2 VSELP Frame Bit Allocation 45

. 3 . VSELP Vocoder Processor Requirements 59
. 4 . VSELP Vocoder Memory Requirements 59

............................. Viterbi Implementation on the TMS320CSx for V.32 Modems 77

1 . Program Benchmarks . 99
2 . V32EncoderCode . 99
. 3 V.32 Decoder Code 99

A TMS320C53-Based Enhanced Forward Error-Correction Scheme for
U.S. Digital Cellular Radio .. 103

1 . Algorithm Execution Time on a 35-11s TMS320C53 . 107
2 . Memory Requirement . 108

IS-54 Digital Cellular Modem Implementation on the TMS320CSx 111
1 . Phase Calculation . 115
2 . ReducedEquations . 121
3 . Odd-Symbol Look-Up . 121
4 . Even-Symbol Look-Up . 122

. 5 . ModulatorLook-Up 122
6 . Program Memory and Speed Requirements . 128

. . 7 Modulator Code Size and Execution Time 129
. . 8 Demodulator Code Size and Execution Time 129

A DSP GMSK Modem for Mobitex and Other Wireless Infrastructures 131

. 1 . Receiver Code Processor Power Requirements 135

Channel Equalization for the IS-54 Digital Cellular System With the TMS320CSx 177

1 . Complexity Comparison of Update Algorithms . 186

Digital Voice Echo Canceler Implementation on the TMS320C5x 189

. 1 . User-Defined System Parameters 197
. 2 Program Module Requirements 198

. 3 . 512-Tap Implementation Data Variables 199
4 . Code Benchmarks . 200

Table
List of Tables

Title Page

....................................... DSP-Based Handprinted Character Recognition 203
. 1 . Application Command Table for HCR Subsystem 211

Implementation of an HMM.Based. Speaker-Independent Speech Recognition System
ontheTMS320C2xandTMS320C5x ... 213

. 1 . Current HMM Vocabulary (49 Words) 217
. 2 . HMM Processor Loading on a TMS320C5x 219

3 . Examples of Qd, Notations (Fixed-Point Representation) 225
The PCMCIA DSP Card: An All-in-One Communications System 237

. 1 . DSP Card Registers 242
....................................... TCM320AC3xJ4x Voice-Band Audio Processors 259

. 1 . Receive-Channel Volume-Control Bits 265
. 2 . VBAP Master Clock Frequencies 265

. 3 . Power-Down and Standby Procedures 266

Example
List of Examples

Title Page

U.S. Digital Cellular Error-Correction Coding
Algorithm Implementation on the TMS320CSx 63
1 . Pseudocode for Trellis Expansion . 69
2 . Trellis Expansion Macro in 'C5x Assembly Code . 70

. 3 . Trace-Back Function - Pseudo-C Code 72
4 . Trace-Back Implementation in 'C5x Assembly Code . 73

.......................... Digital Voice Echo Canceler Implementation on the TMS320CSx 189

1 . Zero-Overhead Loops UPDATE.ASM . 192
2 . Echo Estimation Routine FIR.ASM . 192
3 . Coefficient Update Routine TAPINC.ASM . 193
4 . Near-End Speech Detection Routine NESPDETASM . 193
5 . Echo Simulation Filter EFILTASM . 194

. 6 . Use of Delayed Branches NESPDETASM 195
7 . Code Excerpt from MULAW.ASM . 195
8 . Taps Update Routine UPDATE.ASM . 196
9 . Serial Port ISR ECHOISR.ASM . 196

Part I
Introduction

Introduction

Mansmr A. Chishtie
Digital Signal Processing Applications - Semiconductor Group

Texas Instruments Incorporated

Overview

The use of programmable digital signal processors (DSPs) is growing rapidly in telecommunication
applications. Conventional wire-line telephony applications were among the earliest adopters of digital
signal processing technologies. High-speed telephone-line modem products use more general-purpose
DSPs than most other industries, and recent growth of personal and mobile communication services has
spurred new interest in high-performance DSPs. With the ongoing integration of mobile communication
services and portable computer applications, the role of programmable DSPs in emerging products is
expanding. Today, digital signal processors are moving from high-end, low-volume applications to
mainstream consumer applications.

Telecommunication applications can be broadly categorized into two classes:

1. Core Applications. These applications are the essence of any telecommunication product and
include baseband signal processing algorithms, voice and data compression, error correction
techniques, and equalization and channel estimation.

2. Enabler Applications. These applications provide necessary human interface, improve overall
quality of an end-product, and include speech and character recognition, echo cancellation, and
noise cancellation.

Programmable Versus Hard-Wired Solutions

DSPs are following the path of microprocessors in terms of performance and on-chip integration. At the
same time, users of DSPs are concerned about power consumption. As the communications industry
improves portable applications, low power and high integration become key design care-abouts. Generally
speaking, a product design is constrained by one or more of the following key design goals, not necessarily
with equal importance:

Power consumption
Product form factor
Upgradability
Cost of product
Cost of design
System integration

These design goals play key roles in selecting a programmable versus function-specific or hard-wired DSP
solution.

Newer generation DSPs are addressing these concerns. They support various low-power and power-down
modes along with clock control options to help meet power goals. System integration and form-factor goals
are often interrelated. With high on-chip integration of peripherals and memory, modem DSPs are
well-suited for portable applications in which product form factor is extremely important. In Part VIII,
"The PCMCIA DSP Card: An All-in-One Communications System", page 237, describes a DSP system
based on Personal Computer Memory Card Interface Association (PCMCIA) type I1 card specifications.
Many DSPs are now available in thin low-profile plastic packages, which are ideal for surface-mount
applications.

In today's evolving communications world, flexibility and upgradability of design are key factors in longer
product cycles. Many personal communication standards are in the early stages of development. Some of
these standards must maintain compatibility with older standards. Programmable DSPs are especially
suitable for designs that require multiple modes of operation and future upgradability. In a U.S. digital
cellular subscriber unit, a programmable DSP engine can easily handle the two-mode operation.

Finally, the traditional distinction between programmable and function-specific DSP designs is fading
because of customizable DSP (cDSP) solutions. Now, designers can decide which section of a design is
best suited for a hard-wired approach. Code that must maintain upgradability can be downloaded into
on-chip RAM. The rest of the program can be masked on on-chip ROM. Algorithm accelerators or custom
peripherals can be designed and placed on the same die. These techniques can be implemented through the
TI standard cDSP cell design methodology or through the standard gate-array design flow of the TEC320
product line.

Fixed-Point Versus Floating-Point Solutions

Typically, floating-point DSPs are used in high-end, high-performance telecom applications such as video
conferencing, network packet switching, cellular base stations, etc. Floating-point DSPs offer large
dynamic range, a fast floating-point computation engine, and large-memory addressability. Due to wider
instruction word size, they support more addressing modes and higher execution unit parallelism as well.
Floating-point support and large operand dynamic range result in an ease of transition from simulation
environment to real-time implementation. A more orthogonal instruction set helps in providing efficient
high-level language code generation tools.

On the other hand, fixed-point 16-bit DSPs are very popular in high-volume, low-power applications.
Generally, they consume less power and cost less because of a smaller die size. They can be operated at
faster speeds because of their relatively simple architecture and fewer speed paths. Newer fixed-point DSPs
provide application-specific instructions and on-chip power management for portable and mobile
communication applications. Due to their prevalence in the mobile communications market, many
upcoming industry standards are fine-tuned for 16-bit fixed-point implementations. One such example is
the voice compression specification of U.S. Digital Cellular Standard, the IS-54. This algorithm is
optimized for 16-bit fixed-point DSP engines. With improved compiler support and a more orthogonal
instruction set, the end-product development cycle has also become shorter.

TMS320 Digital Signal Processors

The TMS320 family consists of five generations of fixed-point and floating-point devices (see Figure 1).
Members of each generation are object-code and, in some cases, pin compatible. Each generation offers
unique features and capabilities, which are optimized for certain types of applications.

Figure 1. TMS320 Family of Devices

Si
a
9
Y cn
a z.
8
C
m

6
't
0) a

6 Fixed-Point Generations 6 Floating-Point Generations

< ~ ~ ~ 3 2 0 ~ 4 x 2

TMS320C30
TMS320C30-27
TMS320C30-40
TMS320C30-50
TMS320C31
TMS320C31-27
TMS320C31-40
TMS320C31 PQA
TMS320C31-50

TMS320C40
TMS320C40-40

/-

TMS320LC31
~ ~ ~ 3 2 0 ~ 5 x 2

TMS320C501-501-571-80
TMS320LC501-501-80
TMS320C511-571-80
TMS320BC511-571-80
TMS320C521-571-80
TM S320C531-571-80
TMS320BC531-571-80
TMS320C56
TMS320C57

\

T M S ~ ~ O C I x

TMS320C10
TMS320C10-141-25
TMS320C14
TMS320E141P14
TMS320C15lLC15
TMS320E151P15
TMS320C15-25
TMS320E15-25
TMS320C16
TMS320C171LC17
TMS320E17lP17

Generation

TMS320C25
TMS320E25
TMS320C25-33
TMS320C25-50
TMS320C26

*

TMS320 Fixed-Point DSPs

The three generations of TMS320 fixed-point DSPs - TMS320Clx, TMS320C2x, and TMS320C5x -
have a 16-bit architecture with a 32-bit ALU and accumulator. They are based on Harvard architecture with
separate buses for program and data, allowing instructions and operands to be fetched in parallel. They also
feature a 16 x 16-bit hardware multiplier for single-cycle multiply operations, and a hardware stack for
fast interrupt response time. An overflow saturation mode prevents wraparound. Most of the instructions
are executed in a single cycle. Performance currently ranges from 3.5 to 40 MIPS (million instructions per
second). Even higher performance DSPs will become available in the near future.

The TMS320C lx generation is based on the first DSP, the TMS32010, which was introduced in 1982. 'Clx
devices include 1441256 words of on-chip RAM and 4K to 8K words of on-chip ROM. Instruction cycle
time is 114 to 280 ns. Members of this generation include the TMS320C10, TMS320C14, TMS320E14
(the EPROM version of the TMS320C14), TMS320C15/E15, TMS320C16, and TMS320C17E17. The
TMS320C14E14 has been optimized for control applications. The TMS320C16 has an expanded memory
address space of 64K words. Low-power versions are also available for 3-volt designs.

The TMS320C2x generation is based on the TMS320C25, featuring 544 words of on-chip RAM and 4K
words of on-chip ROM. Total address space is expanded to 64K words for both data and program. The
instruction set has been considerably enhanced over the TMS320Clx instruction set, reducing the
instruction cycle time to 120180 ns. Other members of the 'C2x generation include the TMS320E25 (an
EPROM version of TMS320C25), the TMS320C26, and the TMS320C28, which expands the on-chip
RAM and ROM.

The TMS320C5x generation includes the TMS320C50 (10K words of on-chip RAM, 2K words of on-chip
ROM), TMS320C51 (2K words of on-chip RAM, 8K words of on-chip ROM), TMS320C52 (1K words
of on-chip RAM, 4K words of on-chip ROM), TMS320C53 (4K words of on-chip RAM, 16K words of
on-chip ROM), and TMS320C53SX (4K words of on-chip RAM, 16K words of on-chip ROM). All the
devices except the 'C52 have two serial ports; the 'C52 has one. Most of the devices in this generation are
available in thin plastic (132- and 100-pin) quad flatpack packages. With an enhanced instruction set,
TMS320C5x devices can execute code at the rate of 25 ns per instruction. New architecture features include
a bit-manipulation unit, called PLU (parallel logic unit), shadow registers for fast context switch, JTAG
serial scan emulation, and zero-overhead loops. Low-power versions are also available.

TMS320 Floating-Point DSPs

The two generations of TMS320 floating-point DSPs - TMS320C3x and TMS320C4x (the first DSP
designed for parallel processing) - have a 32-bit architecture with 40-bit extended-precision registers.
They are based on Von Neuman architecture. Multiple buses have been added for faster throughput.
Features include a hardware floating-point multiplier and a floating-point ALU.

The TMS320C3x generation is based on the TMS320C30 and features 2K X 32 words of on-chip RAM,
4K x 32 words of on-chip ROM, and a 64-word on-chip instruction cache. 'C3x devices include an on-chip
DMA controller, two serial ports, two timers, two external 32-bit data buses, and a 16M-word linear address
space. Instruction cycle rates are 60 and 50 ns, with peak performance of 40 MFLOPS (million
floating-point operations per second). A low-power version of TMS320C31 features special instructions
for power management.

The TMS320C4x generation includes the TMS320C40, a parallel digital signal processor. It includes six
communications ports, a self-programmable six-channel DMA coprocessor, a developingldebugging
analysis module, two independent 32-bit memory interfaces, a 16G-byte address space, and two timers.
Other features includes two 4K-byte RAM blocks, one 16K-byte ROM block, and a 512-byte instruction

cache. This generation is designed to execute each instruction in 40 ns, perform up to 275 MOPS (million
operations per second), and provide 320M-bytelsecond throughput.

TMS320C5x Architecture

The TMS320C5x generation is designed to perform complex computation-intensive signal processing in
real time. It has a high-performance pipelined architecture that enables it to execute each instruction at the
maximum rate of 25 ns per instruction. It has a familiar 16132-bit accumulator-based architecture with a
16-bit wide external address bus and a hardware multiplier similar to traditional DSP architectures. It
includes a bit-manipulation or parallel logic unit, (PLU), which allows it to efficiently implement
traditional microcontroller-type operations. Automatic interrupt context switch and reduced interrupt
latency are made possible by on-chip shadow registers and an 8-word deep hardware stack. On-chip
peripherals include two serial ports (one of which can be used in the time division multiplex mode), one
timer, a wait-state generator, and a phase-locked loop for clock frequency multiplication. Figure 2 on page
8 shows the key features of the TMS320C5x architecture.

The TMS320C5x architecture introduces several new features to make it suitable for telecommunication
and related applications. Traditional communication designs (such as modems and cellular radios) use a
microcontroller and one or more digital signal processors. Typical microcontroller tasks are system control,
general housekeeping, and user interface. These tasks are generally run on a microcontroller because they
do not require a high-performance processor. Additionally, these functions are often written in C and
involve bit manipulation. The 'C5x bit manipulation unit (PLU), memory-mapped input-output ports,
dynamic postscalers and prescalers, and C language support enable these traditional microcontroller tasks
to be efficiently implemented. Salient features and benefits of TMS320C5x architecture are shown in Table
1.

Table 1. Benefits of TMS320CSx Features

--

Harvard architecture /multane~sly accesses instictions and data operands

Feature

Parallel logic unit I Allows direct bit manipulation on memory operands

Benefit

Shadow registers I Allow zero-overhead context switch for interrupts

Hardware stack I Supports fast interrupt processing

Repeat-block loops / Reduce overhead of looped code

Memory-mapped 110 ports / Efficiently handle peripheral data transfer

Circular buffers I Implement queues. delay lines, circular convolution, etc.

Hardware multiplier (Supports single-cycle signed and unsigned integer multiplication

Power-down modes I Reduce active and idle power consumption

High-speed, single-cycle
instruction execution unit

Helps implement advanced signal-processing algorithms in real time

Figure 2. Key Features of the TMS320C5x Architecture

0-16-Bit 16-Bit T
Preshift Register

32-Bit ACC
With Buffer

32-Bit PLU
ALU

16 x 16-Bit
Multiply

0-7-Bit
Preshift

0-16-Bit
Right-Shift

Memory Mapped 0-, 1-, 4-, 6-Bit Shift
Registers

-8 Auxiliary Context Switch

-3 TREGs Status Register

-Block/Repeat

-Circular Buffer Instruction
Register

T
Program ROM ProgramlData RAM

JTAG TestIEmulator
Control B

ProgramlData Buses

Serial Ports +D

CPU

Timer 4 1

Software Wait States +B

I10 Ports +B

Phase-Lock Loop A D

Speech and Character Recognition Algorithms

DSPs are often called upon to perform user-interface tasks in addition to core applications. This is a direct
consequence of one very important feature of a DSP-based product: flexibility of design. This flexibility
allows system designers to load additional tasks on their DSPs to better utilize spare MIPS. A pertinent
example is that of a mobile phone; the voice dialing feature can be easily implemented on a DSP without
additional DSP horsepower. This is because the phone will be on-hook (or off-air), and the DSP will have
many spare MIPS available when the voice dialing feature is enabled. With the onset of personal digital
assistant (PDA) technology in which computers and communication applications merge, human interface
designs are gaining more importance. Three application papers are presented in this section.

System Design Considerations

Every DSP system engineer deals with several design care-abouts. This part highlights some of these
general hardware and software design considerations. The paper "The PCMCIA DSP Card: An All-in-One
Communications System" presents an embedded DSP hardware design example. The second paper,
"Software Coding Guidelines for 'C5x Developers" outlines general programming guidelines for
TMS320C5x assembly language programmers. Finally, the paper "TCM320AC3x/4x Voice-Band Audio
Processors" describes DSP applications with voice-band audio processors.

Bibliographies and Other References

To keep TMS320 designers aware of new applications and developments related to the TMS320 DSPs,
Texas Instruments has published extensive bibliographies of TMS320-related conference papers and
technical articles. Part IX of this book serves as an extension to the previously published bibliographies.
It lists only those papers and articles that are generally related to telecommunication applications.

In addition to this collection of telecommunications-related papers on TMS320C5x digital signal
processors, Texas Instruments has published related application papers on other TI digital signal
processors. For more information, refer to Volumes 1,2, and 3 of Digital Signal Processing Applications
with the TMS320 Family: Theory, Algorithms, and Implementations.

Part I1
Digital Cellular Systems

Digital Cellular Phone:
A Functional Analysis

B. I. (Raj) Pawate
Mansoor A. Chishtie

Digital Signal Processing Applications - Semiconductor Group
Texas Instruments Incorporated

Introduction

This document presents the functional components of a dual-mode cellularphone as specified by the CTIA
IS-54 standard. For each functional component, the relevant algorithm, its data structures, if any, and
implementation details are given.

A Functional View of a Dual-Mode Cellular Phone
As shown in Figure 1, a dual-mode cellular phone consists of the following:

Transmitter Antenna assembly

Receiver

Coordinator

Control panel

A dual-mode phone is capable of operating in an analog-only cell or a dual-mode cell. Both the transmitter and
the receiver support both analog FM and digital time division multiple access (TDMA) schemes. Digital
transmission is preferred, so when a cellular system has digital capability, the mobile unit is assigned a digital
channel first. If no digital channels are available, the cellular system will assign an analog channel.

The transmitter converts the audio signal to a radio frequency (RF), and the receiver converts an RF signal
to an audio signal. The antenna focuses and converts RF energy for reception and transmission into free
space. The control panel serves as an inputJoutput mechanism for the end user; it supports a keypad, a
display, a microphone, and a speaker. The coordinator synchronizes the transmission and receive functions
of the mobile unit.

Figure 1. Functional Components of a Dual-Mode (IS-54) Cellular Phone
Transmitter

I I

Analog-to-Digital Coder RF Amplifier Converter Phase Modulator

a
Transmit Audio

Signal Processing
FM

~ ~ , j ~ l ~ ~ ~ ~ + RF Amplifier

Display n
Control 0

Antenna
Assembly

Digital-to-Analog , Decoder
RF Amplifier

Converter Demodulator

4

Receive Audio FM
Signal Processing Demodulator RF Amplifier

.

I I

Control
Panel Receiver

I

1

Coordinator

Figure 2 shows the functional components of the digital portion of a dual-mode cellular phone.

Figure 2. Functional Blocks of the Digital Portion of a Dual-Mode Phone

Phase
Shift

;------l~f
864-904 MHz

Shift

Detector G
RF Control a-
Detector 7

/ 824-849 MHz I
Filter

869 - 894 MHz

45 MHz 1 AGC

CDVCC =coded digital verification color code
DQPSK = differential quaternary phase-shin keying
FACCH = fast assoc~ated control channel
SACCH = slow assoc ate0 contro channel

Transmitter

The transmitter converts low-level audio signals from the microphone to digitally coded RF signals by
audio processing, digital signal processing, modulation, and RF amplification. The transmitter converts
64-kbps pulse code modulation (PCM) data to a lower data rate, multiplexes control information,
error-protects the data, and then passes the data stream to the RF section for modulation, amplification, and
transmission. The coordinator inserts system control messages.

Transmit Front-End Processing

Speech signals from the microphone are first amplified, passed through an antiliasing filter, and sampled
at a rate of 8 kHz to create a digitized p-law 64-kbps bit stream. Typically, no pre-emphasis is applied.
Figure 3 shows the functional blocks of the front-end analog section. The standard does not propose any
specific echo canceler; however, it recommends implementing one. The front-end processing includes the
following:

An amplifier. The gain is specified to produce an average signal energy, during a frame, which
is 18 dB down from full scale.
A bandpass filter to avoid antialiasing.
An analog-to-digital converter. The standard recommends that you either directly convert the
analog signal to a uniform PCM format with a minimum resolution of 13 bits or convert the
analog signal to an 8-bit p-law codec sample.

Figure 3. Front-End Analog Section Converts Audio to a 64-kbps Data Stream

Either a linear ADC with 13 bits
of resolution or an 8-bit p-law

codec sampled at 8 kHz

w-

Speech Coder

Amplifier

The speech coder further reduces the data rate by compressing the 64-kbps data stream input to create a
7.950-kbps data stream. The IS-54 standard accepts a full-rate speech coder called vector sum excited
linear prediction (VSELP). This algorithm belongs to a class of speech coders known as code excited
linear predictive coders (CELP). This class uses code books to vector quantize the excitation (residual)
signal. VSELP is a variation on CELP.

The incoming 64 kbps of data are grouped into frames at a frame rate of 50 frames per second. Hence, each
frame contains 160 samples and represents a duration of 20 ms. Each frame is coded into 159 bits. Hence,
the rate of the conversions is 50 x 159 = 7950 bps, as shown in Figure 4.

----+

Figure 4. Full-Rate Speech Coder (VSELP) Reduces a 64-kbps Data Stream to an
8-kbps Data Stream

rn

Speech
64-kbps Coder 7.950-kbps

-15 MIPS

-
BP Filter

The speech decoder utilizes two separate code books. Each code book has an independent gain. The two
code-book excitations are each multiplied by their corresponding gains and summed to create a combined
code-book excitation. The basic parameters are shown in Table 1.

+ 64 kbps

Table 1. Basic Parameters of a VSELP Speech Coder

Parameter Notation Specification

Sampling rate s 8 kHz

A_ r

Frame length N f 160 samples (20 ms)

ADC

Subframe length N 40 samples (5 ms)

Short-term predictor order NP 10

Number of taps for long-term predictor NL 1

Number of bits in code word 1 (number of basis MI
vectors)

7 bits

Number of bits in code word 2 (number of basis M2 7 bits
vectors)
NOTE: Within a frame, the 159 bits are allocated as shown in Table 2 ; detailed bit allocations are shown in Table 3.

Table 2. Bit Allocations Within a Frame of Speech

Parameter Bits Allocated
-

Short-term filter coefficients 38

Frame energy, RO

Lag, L

Code words, I, H

Gains beta, gamma1 , gamma2 32

Table 3. Detailed Bit Allocations of Parameters Within a Frame

Parameter Parameter Name Bits Allocated

Frame energy RO 5

1 st reflection coefficient

2nd reflection coefficient

3rd reflection coefficient LPC3 5

4th reflection coefficient

5th reflection coefficient

6th reflection coefficient

7th reflection coefficient

8th reflection coefficient

9th reflection coefficient

10th reflection coefficient

Lag for first subframe LAG-1 7

Lag for second subframe

Lag for third subframe

Lag for fourth subframe

1st code book, I, for first subframe

1st code book, I, for second subframe

1 st code book, I, for third subframe

2nd code book, H, for first subframe CODE2-1 7

2nd code book, H, for second subframe

2nd code book, H, for third subframe

2nd code book, H, for fourth subframe

{GS, PO, P I } code for first subframe

{GS, PO, P I } code for second subframe GSPO-2 8

{GS, PO, P I } code for third subframe GSPO-3 8

{GS, PO, P l } code for fourth subframe GSPO-4 8

Channel Coder

The main function of the channel coder is to protect the data stream against the noise and fading that are
inherent to a radio channel. The coder accomplishes this by adding extra or redundant bits. The greater
the number of redundant bits, the higher the immunity to interference and the lower the bit-error rate. The
tradeoff is an increased data rate.

The channel coder protects the data stream in four stages:
1 . Convolutional coding
2. Cyclic redundancy check (CRC) generation
3. Interleaving
4. Burst generation

The first two are mathematical operations, whereas the last two are heuristic approaches. The receiver
performs an inverse operation to determine whether errors have occurred during propagation. In radio
propagation, it has been found that the fading occurs at localized instances of time and space. As a result,
interleaving spreads the information of the data stream across two frames, because it is unlikely that a
clustered bit error would occur in successive frames. Finally, data is propagated in bursts.

Between interleaving and burst generation, the channel coder multiplexes control information. Figure 5
shows the functional components of a channel coder.

Figure 5. A Channel Coder and Its Functional Components With Associated
Data Rates

7.950-kbps
Data Stream

rn 1 Channel I
Coder

48.6-kbps
Data Burst

Convolutional Coding

Convolutional coding provides error-correction capability by adding redundancy to the transmitted
sequence. Convolutional encoding is implemented by linear feed-forward shift registers.

m,

A convolutional coder is described by the rate at which data enters the coder and the rate at which data
leaves the coder. For example, a rate- 112 convolutional coder implies that for every 1 bit of data entering
the coder, 2 bits leave the coder. The smaller the ratio, the greater the redundancy. This improves the
error-protection capability.

Control Signal
Multiplex~ng

To reduce the bit rate, not all of the 159 bits in a frame are error-protected. Only 77 of these bits, called
class 1 bits, are error-protected. The remaining 82 bits, called class 2 bits, are not error-protected. This
is shown in Figure 6.

nlluwAl Errq
Protect~on .y

7.950
r ~ u r s t

kbps kbps kbps kbps kbps
13

Interleaving
48.6 16.2 13

n y Generator

Figure 6. Error Protection via Convolutional Coding and CRC Computation

Speech Frames
X and Y

12 Most
Perceptually
Significant

Speech Frames
Y and Z

Speech
Coder

Cyclic Redundancy Check
Of the 77 bits that are error-protected, it has been found that only 12 are perceptually significant. Hence
these are protected by using a 7-bit cyclic redundancy computation before they are input to the
convolutional coder. A 7-bit CRC is computed by dividing the data by a specified constant and transmitting
the remainder with the data. The receiver detects errors by comparing the received remainder with what
it has calculated.

The following generator polynomial is used for the CRC:

gCRC(X) = 1 + X + ~2 + x 4 + ~5 + x7
(1)

The parity polynomial, b(X), is the remainder of the division of the input polynomial by the generator
polynomial as shown below:

a(x)*x7 / gCRC(X) = q(X) + b(X)/gCRC(X) (2)
where q(X) is the quotient of the division and b(x) is the remainder. The quotient is discarded, and only
the parity bits identified in b(X) are encoded for transmission. To facilitate the convolutional coder, these
parity bits are placed into the array of class 1 bits.

Figure 7. Error Protection Adds 101 Extra Bits per Speech Frame

Error Protection

Error Adds 101 Bits120 ms

Protection

7.950 kbps 13 kbps

Bits 5 Tail Bits

7-Bit

-J CRC Coded .

In short, as shown in Figure 7, error protection adds 101 bits every 20 ms, or an additional 5050 bps.

3 260 2
Calc.

C ~ ~ S S $

u
,-Slot

Interleaver

Class 2 Bits 82)

Class 1
Bits

178)
Rate 112

Convolutional
Encoder

m

-

Cipher Voice

lnterleaving

As explained earlier, data from each frame is now divided and spread across two transmit slots. This is done
because fading might destroy a frame, but it is unlikely that it will destroy two frames in succession. As
a result, not all bits from a speech frame are lost by one bad slot. Figure 8 shows how the data is interleaved
when x, y, and z are three speech frames in succession.

Figure 8. lnterleaving Adjacent Frames for Error Protection

Speech
Frames
x and y

Speech
Frames
y and z

Table 4 shows how the data is interleaved when y is the current frame and x is the previous frame. Note
that the speech data is entered into the interleaving array by columns.

Table 4. lnterleaving of Two Adjacent Speech Frames, x and y

The 159 bits from a speech frame are classified as class 1 and class 2 bits; data is placed into the interleaving
array in such a way that class 2 bits are intermixed with class 1 bits. Class 2 bits are sequentially placed
into the array and occupy the following numbered locations:

0, 26, 52, 78

93 through 129

130, 156, 182, 208

223 through 259

Control Signal Multiplexing

Control signal information is added to the interleaved data. Control information includes

Slow associated control channel (SACCH)
Fast associated control channel (FACCH)
Digital verification color code (DVCC)
Synchronization word (SYNC)

Figure 9 shows how all this control information is multiplexed.

Figure 9. Control-Signal Multiplexing

Combined
Data

Slow associated control channel (SACCH) is a signaling channel in parallel with the speech path used for
the transmission of control and supervisory messages between the base station and the mobile unit.
SACCH messages are continuously mixed with the channel data; 12 bits are allocated for SACCH.

Fast associated control channel (FACCH) is a signaling channel for the transmission of control and
supervisory messages between the base station and the mobile unit. FACCH messages are not mixed with
the user information bits; they replace the user information block whenever necessary.

Digital verification color code (DVCC) is an 8-bit code that is sent by the base station to the mobile unit
and is used to generate coded digital verification color code (CDVCC). CDVCC is a 12-bit field that
includes the 8-bit DVCC; CDVCC is sent in each slot from the base station to the mobile unit and vice versa.
The CDVCC is used by the receiver to distinguish the current traffic channel from traffic cochannels.

Synchronization word (SYNC) is a 14-symbol field that is used for slot synchronization, equalizer training,
and time slot identification.

Mobile Assisted Handoff

Mobile Assisted Handoff (MAHO) is a new feature of IS-54. The base station can command the mobile
unit to perform signal quality measurements on the current forward channel and any other 12 forward
channels. The mobile unit can measure two quantities:

1. Received signal strength indicator (RSSI), which is a measure of the signal strength expressed
in dB.

2. Bit error rate (BER), which is an estimate of the bit error information obtained by measuring the
correctness of the data stream at the input to the mobile unit's channel decoder.

These channel quality measurements (RSSI and BER) are sent to the base station to assist it in handoff.
This reduces the overhead on the base station. RSSI and BER are usually sent via SACCH, although they
could be sent via FACCH during discontinuous transmission (DTX). DTX is a mode of operation in which
a mobile unit transmitter autonomously switches between two transmitter power levels while the mobile
unit is in the conversation state on an analog voice channel or a digital traffic channel.

Burst Generator

After the data has been compressed and error-protected, the bit stream is compressed (in time only) into
a burst format. Burst timing offsets may be applied to facilitate dynamic time alignment. Figure 10 shows
how the data is compressed and time-aligned to allow the data to be sent using one-third of the 48.6-kbps
channel.

Figure 10. Burst Generator

16.2
kbps

48.6 kbps
Burst

speech FACCH m,-- m--MlIL To RF Modulator

48.6 kbps

SACCH

I I

Transmitter d4 DQPSK Modulator and RF Amplifier

The 48.6-kbps data is now input to a differential quaternary phase-shift keying (DQPSK) modulator. This
phase modulator groups two bits at a time to create a symbol. This results in four levels of modulation,
as shown in Figure 11. Hence, the name quaternary. The term diferential is used because symbols are
transmitted as relative phase changes, rather than absolute phase values.

Storage

t

End of
I Receive

Burst

Delay
29-44

Symbols
6.67-ms

Pulse ,

Figure 11. A 4-Level Modulator Groups Two Bits to Form a Symbol

Figure 11 shows that for certain transitions, the origin will have to be crossed. This implies that the power
envelope at the decoder will be 0 when the origin is crossed; this can have an undesired impact on the filters.
To alleviate this, a n/4 scheme is used. This is shown in Figure 12. The transitions in this scheme are either
+/-45 degrees or +/-I35 degrees, and the origin is never traversed in transition from one state to another.
This results in eight points on the circle, as shown in Figure 12.

Figure 12. 7d4 Differential Quaternary PSK Modulator States

Figure 13 shows how the input serial data is now presented as 2-bit parallel data and is supplied to the
multipliers after digital-to-analog conversion. Since two digital-to-analog converters (DACs) are needed,
they are sometimes referred to as dual DACs. Binary signals vary the phase-shifted signals via the
multipliers. Filters limit the impulse response of the binary signals to ensure that the RF carrier occupies
the allocated bandwidth. The two signals are then summed together to form the final phase-shifted carrier.
The conversion from baseband to RF (that is, frequency translation of the modulated carrier) is typically
carried in several stages in order to reach the 800-MHz range.

Figure 13. d 4 DQPSK Modulator

48.6 kbps

nnn

Yk b

RF Amplifier

I

soo
Phase
Shift

The RF amplifier boosts the RF-modulated signal to output levels, as specified by the base station. Unlike
analog transmission, which uses FM, the R F arnplifier for DQPSK carrier must be linear. In FM, class C
push-pull nonlinear amplifiers are used for amplification purposes. These nonlinear amplifiers are efficient
(about 50%) in order to conserve power, However, nonlinear amplifiers cannot be used in DQPSK, because
they would cause phase distortion. Linear amplifiers used for DQPSK are less efficient (30%). Figure
14 shows an RF amplifier.

- - DIA

Xk b

Figure 14. Linear RF Amplifiers Are Needed for IS-54 Cellular Phone

a

b Multiplier

Linear
RF Amplifier

L

30% v

Efficient

A

Q

TR Switch

Dl A

While a duplexer is required for the analog section of the dual-mode phone, it is not required for the digital
portion, because in this case the transmitter and the receiver do not operate simultaneously. A simple PN
switch is enough to isolate the receiver from the transmitter, allowing the duplexer to be removed from the
digital portion. Removing the duplexer has added benefits: when DQPSK signals are passed through a

Multiplier b
I

duplexer, a phase distortion occurs because of group delay; in addition, there is some power loss, which,
in turn, requires a higher-rated power amplifier. Hence, removing the duplexer reduces the rating on the
power amplifier, which extends the battery life of the mobile unit.

Receiver

The receiver functions in the following order:
1. Amplifies the received radio signal
2 . Superheterodynes the RF signal to a lower workable frequency range
3. Demodulates the signal
4. Equalizes or compensates to mitigate the effects of distortions introduced by the radio channel
5. Detects errors
6. Decodes the speech signal
7. Converts it back into analog form and eventually feeds it to a speaker

The receiver consists of several functional components:
Receiver RF amplifier
Mixer section
Demodulator
Channel decoder
Speech decoder

Receiver RF Amplifier
This section of the receiver amplifies the low-level DQPSK RF carrier, which could be as weak as a few
picowatts (- 11 6 dBm). The RF amplifier increases this weak RF signal to a workable range before feeding
it to the mixer section. The receiver RF amplifier is a broadband RF amplifier, which has a variable gain
controlled by an automatic gain controller (AGC). The AGC compensates for the large dynamic range of
the received signal, which is approximately 70 dB. The AGC also reduces the gain of the sensitive RF
amplifier so that as the input signal increases, no distortions due to overdriving the receiver occur. Figure
15 shows the RF portion of the receiver.

Figure 15. RF Portion of Receiver Section of Dual-Mode Cellular Phone

I 48.6-kbps Burst

Mixer
The frequency of the received carrier is in the range of 869-894 MHz. It is not cost-effective to directly
demodulate this RF signal at this frequency range. Typically, the received signal is stepped down to a lower

b

A

Equalizer RF
Amplifier AGC

DQPSK
Demodulator

-

frequency, called the intermediate frequency (IF), by mixing it with a local oscillator (refer to Figure 2).
The oscillator source may be varied so that the IF is a constant frequency, which simplifies the IF amplifier
design. Typically, a second mixer superheterodynes the first IF with another oscillator source to produce
a much lower frequency than the first IF. A lower frequency enables the design and use of narrow-band
filters.

Demodulator

A DQPSK demodulator extracts data from the IF signal. Typically, a local oscillator with a 90-degree
phase-shifted signal is used. The demodulator determines which decision point the phase has moved to;
it then determines which symbol is transmitted by calculating the difference between the current phase and
the last phase (note that the transmitter is a differential modulator).

Once the symbol has been identified, the next step is to decode the two bits. However, due to noise, Doppler
effects, and Rayleigh fading, the signal must be compensated or equalized. Fading occurs when the same
RF signal arrives at the receiver at different times because of multiple paths caused by reflections. The
Doppler effect is caused by the motion of the transmitter relative to the received signal. The Doppler effect
causes the received frequency to vary in proportion to the speed at which the mobile unit is moving; this
implies that the equalizer section of a personal communication systems (PCS) unit need not be as complex
when it is traveling at pedestrian speeds as when it travels at higher vehicular speeds.

Equalizer

The equalizer is effectively an inverse filter of the channel distortion. Since the RF channel is not constant
(as a wireline channel is assumed to be), it is necessary to track or adapt to the changing RF channel. Hence
the name adaptive equalizer.

The IS-54 specification does not recommend a specific equalizer algorithm. At present, two classes of
equalizers are popular:

The decision feedback equalizer (DFE)

The maximum likelihood sequence estimator (MLSE)

Figure 16 shows an example MLSE adaptive equalizer [4]. It operates adaptively in a training mode at the
beginning of each burst, as well as in a tracking mode during message detection. It includes a matched filter
and a modified Viterbi processor. The equalizer in Figure 16 is used by the European GSM system but is
similar to the ones used in North America.

Figure 16. An MLSE Adaptive Equalizer

Match

@ Fw-ul Adaptation Reconstruct 1

After demodulation and low-pass filtering of the received signal, the components x(t) and y(t) are sampled
and AD is converted, with a sampling frequency equal to the bit rate. Then the signal samples are filtered
through a digital N-tap transversal filter, which approximates the matched filter (MF) shown.
Theoretically, an MF makes the receiver insensitive to the carrier and clock phases used to demodulate and
sample the received signal, provided that the MF coefficients are properly adjusted and the time span of
the MF is long enough to include all the channel impulse responses. To this end, you must choose the
number of taps, N, in the MF to comply with the maximum number of echo delays that you expect to
observe in the operational environment. Note that the modulator output pulses are spread over three bit
periods. Typically, N = 6 seems to suffice. The MF output samples are finally processed according to the
modified Viterbi processor, which operates on a number of states S = 2N - 1. The complexity of the Viterbi
processor varies exponentially with respect to N.

-
I

Channel Decoder

The channel decoder detects errors in the bit stream, demultiplexes the control data, and feeds the data to
the speech decoder. This is shown in Figure 17. If errors are detected, a masking strategy, explained in
Bad Frame-Masking Strategy on page 28, is applied.

Viterb,i
Adaptat~on

Coefficient
Adaptation = '

Figure 17. Channel Decoding and Speech Decoding

48.6 kbps 13 kbps 7.950 kbps 64-kbps PCM

1 FACCH Message

The channel decoder works in the following stages:
1. Control signal demultiplexer
2. Error detector

Control Signal Demultiplexer

VSELP I I
b

I

Speech, SACCH, FACCH, and DVCC data signals from the demodulator are demultiplexed to separate
the various signaling information. SACCH and DVCC data are simply demultiplexed by directing the
dedicated bits from each burst to their control-processing locations. Speech and FACCH demultiplexing
is, however, more challenging. Since FACCH data may replace speech data at any time, FACCH data is
extracted by first attempting to detect errors in speech data. If the CRC appears to be correct as decoded
for a speech slot, the data is routed to the speech codec section. When the CRC is in error, the data is then
decoded as a FACCH message. If the CRC appears to be correct, this FACCH message is routed to its
call-processing location.

- - - - - -
b

I
Control
Signal

Multiplexer
Decoder Error

Detection

- - A
Discarded
Speech
Data

1r

'r -
Channel
Decoder

+

FACCH
Decoder

CDVCC
--sAccH

SYNC
v

Error Detector

DVCC words are error-detected, compared to the assigned DVCC to determine cochannel interference, and
sent to the transmit section to be echoed back to the base station.

The channel decoder provides BER information and RSSI when commanded by the base station. This
feature is called MAHO, which is discussed in the Mobile Assisted Handoff section on page 21.

Bad Frame-Masking Strategy

The bad frame-masking strategy is based on a 6-state machine. On every decode of a speech frame, the
state machine can change states. State 0 occurs most often and implies that the CRC comparison was
successful. State 6 implies that there were at least six consecutive frames that failed the CRC check. The
action taken at each of these states varies as well. At state 0, no action is taken. States 1 and 2 are simple
frame repeats. States 3, 4, and 5 repeat and attenuate the speech. State 6 completely mutes the speech.
A detailed description of the action corresponding to each state follows:

State 0: No CRC error is detected. The received decoded speech data is used.
State 1: A CRC error detected. Parameter values R(0) and the LPC bits from the last frame that
was in state 0 are repeated. The remaining decoded bits for the frame are passed to the speech
decoder without modification.
State 2: Identical to the action for state 1.
State 3: Similar to the action for state 1, except that the value for R(0) is modified. A 4-dB
attenuation is applied to the R(0) parameter: that is, if R(0) of the last state 0 frame is greater than
2, then R(0) is decremented by 2 and repeated at this lower level.
State 4: Similar to state 3. A further attenuation by 4 dB is applied to R(0) so that the level is
as much as 8 dB from the original value of R(0).
State 5: Similar to 4. R(0) is further attenuated by 4 dB.
State 6: The frame is repeated; but this time R(0) is cleared to 0, totally muting the output speech.
Alternatively, comfort noise could be inserted in place of the speech signal.

Speech Decoder

The speech decoder, VSELP, converts the 7950-bps input data stream into 64-kbps PCM data. In poor radio
conditions, the performance of VSELP has been shown to be superior to analog cellular. This is primarily
due to the error-protection and error-detection capabilities that are made possible by digital techniques.

When speech frames are lost because of errors and are not correctable, the speech coderrepeats the previous
frame information. If the n ~ m b e r of consecutive lost speech frames increases, a gradual muting is applied.
Thus, gaps are filled by using the characteristics of the human ear.

When the user data is not speech, but computer or facsimile data, then the speech decoder is bypassed.

Adaptive Spectral Postfilter

The perceptual quality of the synthetic speech can be enhanced by using an adaptive spectral postfilter as
the final processing step. The form of the postfilter is

. -
1 -2 v ia , z-'

r = l

ai = Coefficient of synthesis filter

Audio Interface

The output of the speech coder, a 64-kbps bit stream, is input to the audio interface, which consists of the
following stages:

1. Digital-to-analog conversion
2. Reconstruction filter
3. Receive-level adjustment

The reconstruction filter minimizes the step transients caused by the D/A converter. The receive-level
sensitivity is defined so that a value of 24 in the RO field, the frame energy, causes an acoustic level of at
least 97 dB at the transducer when measured by an artificial ear. RO equal to 24 represents the average frame
energy during a frame, which is 18 dB down from full scale.

Summary

This report presents a brief functional overview of a digital cellular mobile station. Emphasis is given to
the algorithmic description and implementation aspects of each function. The main purpose of this paper
is to provide a general introduction to various functional blocks. Refer to the other papers in this book for
a detailed implementation description of the individual functions.

References
1. Cellular System: Dual-Mode Mobile Station - Base Station Compatibility Standard, IS-54

Project Number 2215, Electronics Industries Association, December 1989.

2. Pawate, B.I., "Wireless Communication: A Systems Perspective7', Texas Instruments (internal
document), 1992.

3. Lin, S., et al., Error Control Coding, Prentice-Hall, 1983.

4. Avella, R.D., et al., "An Adaptive MLSE Receiver for TDMA Digital Mobile Radio", IEEE
Journal on Selected Areas in Communications, Vol. 7 , pp. 122-1 29, January 1989.

IS-54 Simulation

John D. Crockeft
Elliott D. Hoole
Thomas Labno
Stephen Popik

Wireless Communications Systems - Semiconductor Group
Texas Instruments Incorporated

Introduction

This paper describes a C language simulation of both the transmit and receive baseband processing for a
digital cellular telephone that meets the U.S. digital cellular standard (IS-54B). This simulation is needed
for two reasons: first, to gain greater understanding of the IS-54 digital cellular standard and the associated
digital signal processing required in a terminal that meets this standard with a vision toward efficient
implementation on the TMS320 DSPs; second, to gain the capability to evaluate the effect of bit errors on
the speech coder (vector sum excited linear prediction, or VSELP) and IS-54 control functions. This
necessitated development of a simulation of the IS-54 processing and RF channel. See Figure 1.

The IS-54 standard separates the data bits into class 1 bits and class 2 bits. The class 2 bits are not protected
and have less influence on the speech coder than class 1 bits. The class 1 bits are convolutionally encoded
so that errors can be detected and corrected. In addition, a cyclic redundancy check (CRC) is calculated
on the 12 class 1 bits designated as most perceptually significant. The CRC is also convolutionally encoded
for error detection and correction and is used to signify noncorrectable errors in the most perceptually
significant 12 bits for special error handling provisions. Consequently, the evaluation of the effect of bit
errors on the voice coder must encompass all IS-54 transmit and receive processing functions.

Figure 1. IS-54B Simulation Processing Block Diagram

PCM Input Interleave ~ransmitter 1
Speech Samples Bit Storage : + A I

1
VSELP +!

Encoder 1
1r I

t Class 2 Bits I
L
r Interleave t DQPSK f

Modulate 1

Class 1 Bits + t
I

Yr fi

Generate + Convolutional SRC
I

CRC + Format t
Encode Filter

1
I

A I

1 - CRC Pass
2 - CRC Fail

Description

The IS-54 simulation starts with input speech parameters that are organized into 20-millisecond frames.
Each frame is processed through the transmit path, the channel simulation, and the receive path.

Transmit Path

A block diagram of the IS-54 simulation is shown in Figure 2. The speech data is read into the simulation
from an input speech file. This file is binary pulse-code-modulated 16-bit data. The VSELP encoder is the
Motorola standard, which is available from the TIA. The VSELP encoder and decoder are not incorporated
into this simulation but are run as a separate program. The output from that program is fed to this simulation,
whose output is then used to create final PCM speech data. From the output of the VSELP encoder, the
most perceptually significant bits of the encoded speech frame are packed into a binary word for generation
of the CRC. The CRC is calculated by first multiplying the input word by 27 and dividing by a polynomial
given in IS-54 as:

The quotient is discarded and the 7-bit remainder is kept.

Figure 2. IS-54 Error Encoding and Interleaving

Speech Frames
X and Y

12 Most
Perceptually
Significant

Speech Frames
Y and Z

Speech
Coder

The CRC, along with the other class 1 bits (IS-54 Table 2.1.3.3.3.4-2) from the VSELP data, is packed into
the cll array [I] to be encoded for forward error correction. The forward error correction is a rate 1/2
convolutional encoder with an initial state of 0x00. This encoder produces two output bits for each bit
input. The last five bits fed into the convolutional encoder are tail bits of state 0 to force the encoder to also
return to the zero state. A block diagram of the convolutional encoder is show in Figure 3.

Bits

+
-J

7-Bit
CRC
Calc.

5 Tail Bits

Class 1
Rate 112 Bits

Convolutional 178;

Class 1 Bits
77?

Encoder

- h

Class 2 Bits 82;

Voice
Cipher

u
3 2-slot

Inter-
leaver

3 260

Figure 3. IS-54 Convolutional Encoding Block Diagram

D-
Convolutionally
Coded 0
Array

Class 1
Bits

Convolutionally

Array

The output from the convolutional encoder, arrays ccO and ccl (IS-54 para. 2.1.3.3.3.4), are then packed
into a 260-bit slot data array along with the class 2 bits (IS-54 Table 2.1.3.3.4-1). During this packing, the
bits are shuffled around within the slot to minimize the probability that a burst error would affect more than
one bit in the same vocoder parameter. This is shown in Figure 2 as voice cipher. The 260-bit slot data
array is then interleaved with data from the previous frame so that the resultant transmitted burst consists
of bits from both the current and previous frames. This interleaving of data across two transmit slots is
designed to randomize the burst error across the data bits, thus increasing the probability that bit errors will
be detectable and correctable.

The data, which consists of speech and redundant error correction information from two frames, is then
formatted to the IS-54 slot format. See Figure 4. This consists of inserting the sync word, the SACCH data,
the CDVCC field, and the reserved bits (the CDVCC and the reserved bit fields are filled with 0s in this
simulation). The base-to-mobile format is used in order to focus on the processing stream in the handheld
terminal.

The IS-54 standard specifies the modulation as n14 differential quadrature phase shift keying (DQPSK).
The input data is paired into dibits, allowing for four symbols that specify a phase change from the previous
point on the complex plane. Each dibit corresponds to an odd multiple of n14 phase change resulting in
an 8-point modulation constellation. These eight points are also called maximum-effect points.

The next function in the transmit path is the square-root-raised-cosine (SRC) filter. This filter is employed
on both transmit and receive sections for the composite effect of araised-cosine filter transfer function. This
results in a filter response with nulls at the adjacent symbols in order to minimize intersymbol interference.
The transmit SRC filter also includes 4X interpolation. The overall filter response is split between the
transmit and receive sections to allow more efficient use of bandwidth due to partial response signaling.

Figure 4. IS-54 Slot Formats

6 6 16 28 122 12 12 122

Slot Format: Mobile Station to Base Station
28 12 130 12 130 12

G

Slot Format: Base Station to Mobile Station

1 R

Sync

G - Guard Time SACCH - Slow Associated Control Channel
R - Ramp Time CDVCC - Coded Digital Verification Color Code
Data - User Information or FACCH Sync - Synchronization and Training
RSVD - Reserved (Set to 0)

Channel Model
At this point in an actual IS-54 handset, the data would then be input to the RF stage for modulation of the
carrier frequency. Because this is a simulation, we chose to substitute simulated fading and noise generation
for the transmit and receive RF portions of the IS-54 processing chain.

SACCH

In a mobile radio environment, signals from many paths combine at the antenna. Depending on the
relationship between the phase angles of the signals, the effect of the combination is interference that can
be constructive or destructive. As the mobile radio moves, the relationship between the phase angles
changes, causing the signals to be combined randomly and providing a challenge for receiver and system
designers. The term for this effect is fading, and because the magnitude of the result occurs in a Rayleigh
distribution about the mean value, it is called Rayleigh fading.

Data

A simulator for generating Rayleigh fading was proposed by W. C. Jakes [4]:

SACCH

Data

N = 34; / * number of simulated signals * /
NO = 0.5 *(N/2 - 1); / * number of oscillators * /
alpha = PI / 4;
V = 55; / * vehicle speed in MPH * /
Fc = 850.03+6; / * carrier frequency * /
lambda = 3.OE+8 / Fc; / * carrier wavelength * /
wm = 2 * PI * V / lambda;

Sync

xc(t) = sqrt(2)*cos(alpha)*cos(wm*t);

xs(t) = sqrt(2)*sin(alpha)*cos(wm*t);

for (n = 1 ; n c= NO ; n++)

wn = wm * cos(2*P1*n/N);

CDVCC Data

CDVCC

xs(t) += 2*sin(PI*n/NO)*cos(wn*t);
1

xc(t) is the in-phase (cosine) component, and xs(t) is the quadrature (sine) component. This model provides
a very good approximation of theoretical behavior and is excellent for general use.

Data

Data RSVD

Another major impairment to wireless communications is within the radio itself. As the received signal
gets weaker, the signal-to-noise ratio decreases, and errors caused by thermal noise in the radio receiver
can occur. This noise is characterized by a zero-mean, Gaussian probability density function in the time
domain. In the frequency domain, the power spectral density of thermal noise is constant and is called white
noise. In a real system, there are filters that limit the bandwidth of the noise, but the power spectral density
of the noise is still constant in the filter passband, so it can still be called white. In the receiver, the noise
is added to the received signal and is therefore termed additive white Gaussian noise (AWGN).

In the simulation, a Gaussian noise generator is used that generates noise of unit variance and then is scaled
to the variance required for the desired signal-to-noise ratio.

Receive Path
The receive path (receiver) is also shown in Figure 1. Raised-cosine-filtered samples are fed into the sync
detector, which looks for the sync word that occurs at the beginning of the slot. The sync detector looks
for this sync word over a 4-symbol window, starting two symbols prior to the expected sync point. When
the data matches the proper slot sync word, the data is fed into the SRC filter. This filter is the same as the
transmit chain SRC filter described on page 36, except that the receive filter performs 4X decimation.

After it is fed through the SRC filter, the data is input to a channel equalizer. As shown in Figure 2, the
channel equalizer can be turned either on or off under command of the cellular base station. The channel
equalizer is not included in this simulation and is the subject of a separate paper [9].

The delay detection process, also called differential decoding, is the inverse of the differential encoding
process in the transmitter. The delay detector computes the amount of phase change between two
successive raised-cosine-filtered maximum-effect points. This can be shown easily with the exponential
notation for complex numbers. Let A*exp(j*PIl2) be the current point and B*exp(j*PI/4) be the previous
point. Now multiply the current point by the complex conjugate of the previous point:

The result is an exponential whose angle is the phase change between the previous and the current points.
Because it is the phase change that contains the information bits, the magnitude can be disregarded.

The deinterleave function recombines a frame of speech data from data received from two consecutive
receive slots. As discussed in the transmit chain description, the data is interleaved to minimize
susceptibility to burst errors. At this time, the data is divided back into the encoded class 1 (ccO and ccl)
bits and the unprotected class 2 bits. The class 1 bits are then fed into a convolutional decoder while the
unprotected class 2 bits are held to recombine with the class 1 bits once decoded.

The convolutional decode is performed via the Viterbi algorithm. A two-dimensional array is built that
is 89 (the number of bits input to the encoder) columns wide and 32 (the possible number of states of the
encoder) rows high. This algorithm calculates the probability of possible paths through the array (which
represent the sequence of states through which the encoder would have passed). This probability is added
to the cumulative probabilities for each of the possible preceding states to give a cumulative probability
for a given trellis position. Then, given that the beginning and ending states of the convolutional encoder
are 0 (0 is the initial state and five tail bits of 0 force it back to state O), the path of maximum probability
is selected by tracing through the array from ending state to beginning state. With the path through the trellis
known, the input bits are easily obtained. The path of maximum probability should produce the original
encoded bit stream, even in the presence of low bit errors.

The CRC value and the 12 most perceptually significant bits are extracted from the decoded class 1 bits.
A CRC is recalculated on these 12 bits and compared against the received CRC. This is done to detect the

presence of errors in these 12 bits. If the CRCs match, the received VSELP speech parameters are sent to
the VSELP decoder. If they do not match, a state machine (IS-54 para. 2.2.2.2.3.2.) is employed for
handling the errors. This state machine stores the last good set of speech parameters for use in cases of
repeated CRC errors. The received speech parameters are then fed into the VSELP decoder for speech
synthesis.

Using the Simulation

One of the goals in developing this simulation was to ensure that it is portable across different computing
platforms. To this end, every attempt was made to use only ANSI-C compatible calls and syntax. The code
was originally developed using Borland C++ 3.1 running on 486133 ISA PCs. It was tested and modified
to make it compatible with the Microsoft Visual C++ 1.0 and Zortech C++ 3.0 compilers, which support
ANSI-C compliance.

To run the simulation, a command file, IS54SIM.PRh4, is utilized to pass all required information to the
program. Additionally, another file, SRC-HLT.DAT, is required and contains the square-root cosine filter
coefficients necessary for the simulation. These files and the simulation program must all reside in the same
working directory.

The format of the command file is simple. It is an ASCII file that contains four lines:

1. The desired SNR
2. The assumed vehicle speed
3. The carrier frequency (used in Fading model)
4. The filename for the input speech data that has already been VSELP processed (This file should

also be in the working directory.)

The SRC-FILT.DAT file is also an ASCII file, where each line is a coefficient used by the SRC filter.

After running the simulation (by typing the program name on the system command line), there are seven
output files produced, all of which reside in the current working directory. These files are summarized
below.

IS54SIM.OUT An ASCII-Hex version of the 193-bit VSELP data recovered for each frame

RAWTXBIT.OUT An ASCII-Hex version of the 324-bit formatted TDMA slot prior to transmis-
sion

CLTXBIT.OUT An ASCII-Hex version of the 89 class 1 bits and 82 class 2 bits for the transmit
slot

CLRXBITS .OUT An ASCII-Hex version of the 89 class 1 bits and 82 class 2 bits recovered in the
receive slot. Each line of receive data (one per slot) is appended with the current
CRC error state (0-7).

RAWRXBITS.OUT An ASCII-Hex version of the 324-bit formatted TDMA slot prior to decoding.
Each line of receive data (one per slot) is appended with the current CRC error
state (0-7).

By examining these output files, a user can determine the performance of an IS-54 transmission under
varying levels of SNR (degradation in the channel). This program also outputs the number of received
frames with valid CRC, the number of frames with invalid CRC, and the bit error rates for each field for
CRC-valid frames.

The simulation was compiled and run on IBM-compatible PCs using several compilers. The simulation
runs three to six slots per second on a 486DX-33MHz PC.

Code Availability

The associated program files are available from Texas Instruments TMS320 Bulletin Board System (BBS)
at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com.

References

1. Cellular System: Dual-Mode Mobile Station - Base Station Compatibility Standard, IS-54B,
Telecommunications Industry Association, April 1992.

2. Chishtie, Mansoor A., "U.S. Digital Cellular Error-Correction Coding Algorithm
Implementation on the TMS320C5xU, Telecommunications Applications With the TMS320C5x
DSPs, Texas Instruments Incorporated, 1994, pp. 63-75.

3. Choong, Yong F., Convolutional Decoder for the IS-54 Error Protected Speech Codes, Digital
Signal Processing Branch, Semiconductor Process and Development Center, Texas Instruments
Incorporated, 1992.

4. Jakes, William C., Jr., Microwave Mobile Communications, John Wiley & Sons, New York, New
York, 1974, pp. 70-76.

5. Proalus, John G., Digital Communications, McGraw Hill, New York, New York, 1989.

6. Choong, Yong , and Chishtie, Mansoor A. , Convolutional Encoder for IS-54 Voice Channel
C program, Texas Instruments Incorporated, 1992.

7. Chishtie, Mansoor A., Viterbi Decoder Algorithm for IS-54 SACCH Control Channel C
program, Texas Instruments Incorporated, 1991.

8. ~ar tmah, Matt, C Language Version of VSELP Speech Coder, Systems Research Laboratories,
Chicago Corporate Research and Development Center, Motorola, Incorporated, 1990.

9. Hoole, Elliot D., "Channel Equalization for the IS-54 Digital Cellular System With the
TMS320C5xW, Telecommunications Applications With the TMS320C5x DSPs, Texas
Instruments Incorporated, 1994, pp. 177-1 87.

Part 111
Speech Synthesis

Theory and Implementation of the Digital
Cellular Standard Voice Coder:

VSELP on the TMS32OC5x

Jason Victor Macres
DSP Software Engineering, Incorporated

Introduction

TIA subcommittee TR45.3 has adopted vector sum excited linear prediction (VSELP) as the voice coding
standard for U.S. digital cellular communications. Motorola was responsible for the design and
development of the VSELP algorithm. Additionally, Motorola has kept implementation details of the
VSELP algorithm proprietary. This paper explains an interoperable VSELP alternative algorithm and the
implementation of this algorithm on a TMS320C5x digital signal processor. The interoperable algorithm
is developed using reference [l] as a guideline.

The VSELP algorithm is a type of code excited linear predictive coding (CELP) algorithm that has been
adopted as the standard for digital cellular communications. The VSELP vocoder encodes speech at a bit
rate of 7950 bitslsecond. An additional 5050 bitslsecond are utilized for error protection and
synchronization, bringing the total bit rate to 13,000 bitslsecond. This paper describes only the voice coding
portion of the vocoder. A brief overview of the VSELP algorithm is presented for background.

Overview of VSELP

Structurally, the VSELP algorithm closely resembles the CELP algorithm. The difference lies in the form
and structure of the code books. Whereas CELP uses a stochastically overlapped code book (each entry
shares all but two samples with its neighboring entries), VSELPutilizes two sets of basis vectors to generate
the space of candidate vectors. Thus, the stochastic code book search of CELP corresponds to two code
book searches in VSELP. There are seven basis vectors for each search. Each basis vector contains 40
elements. The selection of the basis vectors is fundamental to deriving fast code book search procedures.
The basis vectors chosen provide for fast orthogondization of the entire space. By orthogonalizing each
of the seven vectors with a vector V, the entire 128 (27) space, defined by the seven basis vectors, is also
orthogonalized.

An open-loop LPC analysis is performed on a frame of speech to derive a set of LPC filter coefficients.
These coefficients are bandwidth expanded for use in perceptual error weighting filters, H(z) and W(z),
where H(z) = lIA(z) and W(z) = A(z)IA(zIy). The input frame of speech is filtered through the filter W(z)
to obtain a perceptually weighted frame of speech. The analysis by synthesis proceeds with three code
books (unlike CELP, which proceeds with two). First, the adaptive code book is searched and the resulting
best entry and gain are found. This entry multiplied by its gain factor is orthogonalized with the first set
of seven basis vectors. Thus, the second code book search can be performed independently of the first code
book search. The new set of basis vectors is used form the code book for the second search. The best entry
and gain are found for this code book and orthogonalized with the second set of basis vectors. Finally, the
third code book search is performed. The gains of each of the three code book searches are jointly quantized
and transmitted with the three code book indices to the receiver.

The basic blocks in the VSELP coder are:

Tenth-order LPC analysis (spectrum predictor)
Long term (pitch) predictor
Adaptive (pitch) code book search
First basis vector code book search
Second basis vector code book search
Vector quantization of the code book gains

The primary VSELP parameters are outlined in Table 1.

Table 1. Primary VSELP Parameters

Symbol Parameter Value
SR Sampling rate 8 kHz

N F Samples per frame 160

N~~ Samples per subframe 40

N P LPC filter order 10

MI No. basis vectors (1) 7

M2 No. basis vectors (2)
BWEXP Bandwidth expansion

LTFORD Long term filter order 1

The VSELP algorithm has been developed from references [I] and [2]. These references contain
information pertaining to the high-level description of the algorithm and provide no actual implemented
software (high-level or assembly).

Bit Allocations

Table 2 shows the bit allocation for the VSELP frame. The frame energy (RO) and reflection coefficients
(LPC1-LPC10) are sent once per frame, while the pitch lag (LAG1-LAG4), code book indices
(CODE1-1-CODE1-4, CODE2-1-CODE2-4), and gain indices (GSPO-1-GSPO-4) are sent four times
per frame.

The total number of bits per 20-millisecond speech frame is 159, yielding a voice coder bit rate of 7950.

Table 2. VSELP Frame Bit Allocation

Parameter Bits Description

LPCIO

LAG I

LAG2

LAG3

LAG4

CODE1-1

CODEl-2

CODEI-3

Frame energy

I st reflection coefficient

2nd reflection coefficient

3rd reflection coefficient

4th reflection coefficient

5th reflection coefficient

6th reflection coefficient

7th reflection coefficient

8th reflection coefficient

9th reflection coefficient

10th reflection coefficient

Lag, SF 1

Lag, SF 2

Lag, SF 3

Lag, SF 4

I st CB index, SF 1

1 st CB index, SF 2

I st CB index, SF 3

1 st CB index, SF 4

2nd CB index, SF 1

2nd CB index, SF 2

2nd CB index, SF 3

2nd CB index, SF 4

GSPO-1 8 Gain index, SF 1

GSPO-2 8 Gain index, SF 2

GSPO-3 8 Gain index, SF 3

GSPO-4 8 Gain index, SF 4

Perceptual Weighting

Perceptual weighting of the input speech signal (or the error signal) improves the performance of the coder.
The high-energy formant regions of the speech spectrum mask noise better than lower energy portions of
the spectrum. The error signal generated by each synthesizer pass is weighted appropriately to capitalize
on this perceptual effect. The filter amplifies the error signal spectrum in nonformant regions of the speech
spectrum and attenuates the error signal spectrum in formant regions. Thus, an error signal whose spectral
energy is concentrated in formant regions of the speech is considered better than one whose spectral energy
is not located under formants.

Open-Loop LPC Analysis
Each incoming speech frame is processed through an open-loop LPC analysis to generate the filter
coefficients used in the remaining portions of the algorithm. The input speech is first windowed using a
Hamming window, then an autocorrelaion is performed and the result is normalized based on the energy
of the first coefficient of the autocorrelation.

The autocorrelation coefficients are then windowed for bandwidth expansion and spectral smoothing using
a rectangular (in frequency) window. The smoothed autocorrelations are the input to a Leroux-Guegan
routine, which transforms the autocorrelation parameters into reflection coefficients. The Leroux-Guegan
algorithm was chosen because it is ideal for fixed-point implementation and is very efficient.

A stability check is performed in the Leroux-Guegan algorithm by monitoring the rms value. If the rms falls
below 0, the Leroux-Guegan is terminated, and the previous reflection coefficients are used. This
instability can occur from ill-conditioned autocorrelation coefficients.

Interpolation

Because the reflection coefficients generated by the LPC analysis represent the spectrum of the speech for
one frame centered over the fourth subframe, the coefficients for the remaining subframes are interpolated
from the current and the previous frame's coefficients. The direct form-filter coefficients are linearly
interpolated. The following table shows the interpolation scheme:

ai = (0.75)ai(previous) (0.25)ai(current) subframe 1 formula

ai = (O.5O)ai(previous) (0.50)ai(current subframe 2 formula

ai = (0.25)ai(previous) (OJ5)ai(current subframe 3 formula

ai = ai(current) subframe 4 formula

Interpolating the direct form coefficients can result in an unstable filter; therefore, the resulting coefficients
must be checked for stability. For the first, second, and third subframes, the filter coefficients are converted
to reflection coefficients. If any of the resulting reflection coefficients' magnitudes are greater than 1, then
the interpolation process has produced an unstable filter. To remedy this instability, the filter coefficients
for the subframe are replaced by the uninterpolated filter coefficients. For the first subframe, the previous
frame's uninterpolated filter coefficients are used. For the third subframe, the current frame's
uninterpolated filter coefficients are used. The second subframe uses the uninterpolated filter coefficients
from the frame (previous or current) that has the higher energy. For the case when the energies are equal,
subframe 2 uses the uninterpolated filter coefficients from the previous frame.

The following data flow illustrates the procedure for quantization and interpolation of the LPC filter
coefficients.

Figure 1. LPC Filter Coefficient Quantization and Interpolation

Stable

b

Long-Term Predictor

The long-term filtering operation (adaptive code book search) for VSELP is similar to the general CELP
long-term filtering operation. The long-term filter is given by:

To accommodate lags less than the subframe size (L c NSF), the equation is modified such that the filter's
output is only a function of the filter state at the start of a subframe.

The flr(x) function truncates the fractional portion of x, returning only the integer portion of x. For L I
NSF, the equations are identical. For L c NSF, the flr function will evaluate to 2 when n = L, as depicted
in Figure 2.

Figure 2. Adaptive Code Book Search

Search Procedure

147 Elements -
t

Adaptive Code Book

I Lag = 40 I

I Lag = 41 I
I Lag = 42 I F

I Lag = 43

Lag=147
Subvectors for each lag
extracted from the adaptive
code book

Update Procedure

Adaptive Code Book (n - 1)

In Figure 2, the portion of the adaptive code book utilized (call this subvector bL) is of length NSF and starts
at the index defined by the current lag value in the search procedure. For L r NSF, this procedure is
straightforward because the length of bL fits (see Figure 2) inside the adaptive code book. The VSELP
algorithm supports lags from 20 to 147; therefore, a special situation exists when the lag (L) is less than
NSF. In this case, the bL vector is placed such that a portion of it hangs over the adaptive code book. These
elements of the adaptive code book (long-term filter state) do not exist yet. The flr function of equation [2]
remedies this by doubling the lag (code book index value). This results in copying the first NSF-L
elements of the bL vector to the ending NSF - L elements.

Best Lag Subvector I

+

I

Discarded Samples Adaptive Code Book (n)

Figure 3. Code Book Search Signal Flow

y(n) Zero lnput
Input Speech * w(z) Response of H(z)

Adaptive
Code Book

Code Yl I

excite(n)

Code Book c
~ (n)

weighted
Error

Code ~2

Code Book
1

For each lag (20 I L I 146), a vector called bL(n) of length NSF is extracted from the adaptive code book.
This vector is filtered through the bandwidth-expanded LPC filter H(z). The resulting vector, b'L(n), is
compared to the input vector p(n). The p(n) vector is the perceptually weighted input speech vector minus
the zero-input response of H(z). The zero-input response is subtracted from the input speech to remove any
of the ringing of the H(z) filter caused by the previous subframe. The bL vector that produces the minimum
mean square error (MSE) (or maximum match score) compared to p(n) is chosen as the best vector from
the adaptive code book. The lag L that produced this bL vector is transmitted to the receiver. The match
score is defined as:

where:

p'(n)

H(z)

NSF- l

CL = 1 bl,(n)p(n)

e(n), Eng
Calc

In digital cellular VSELP, P is restricted to positive numbers; therefore, only lags with a positive CL are
considered in the search procedure. If no lag with a positive CL can be found, the adaptive code book is
disabled. The lag is coded using seven bits, yielding 128 possible lag values. Since only 127 of these values
are valid (20 5 L 5 146), one lag value is reserved to disable the adaptive code book search in the decoder.
It should be noted that the gain coefficient is not coded at this time. After all three code vectors are
determined, a joint optimization is performed on the three gain terms, P, 71, and $.

Our implementation precomputes all of the correlations and energies and stores them. The temporary
storing of these parameters is not strictly necessary; however, it allows us to find a scale factor so the search
can be performed utilizing maximum dynamic range. Preserving dynamic range is very important for a
proper pitch search.

Code Search Algorithm

Each of the two code books is constructed from a set of M basis vectors. These vectors are combined
linearly to form a code book of size 2M. The code book vectors are described by:

where v, is the mth basis vector and ui is the ith code-book vector. The value of 0 is either +1 or -1 and
is formulated as follows. Each of the code book vectors, ui, is indexed by i. If the indices are viewed in
binary form, M bits are required to represent the index space. If the LSB of the index is defined as bit 1 and
the MSB is defined as bit M, then €Ii, can be defined as:

If (bit m of index i = 1)

then Oim = +1

If (bit m of index i = 0)

then €Iim = -1

The following provides an example for the trivial case when M = 2. This defines a code book size of 22,
or 4. In this case, only two basis vectors are required, namely vl and v2. Each of the four code book vectors
is developed below.

It should be noted that ug = -u3 and ul = - u2. These are called complementary code book vectors, and this
property is exploited in the code book search to reduce computational requirements.

The VSELP code book structure was defined above for a static single code book. The formula below
expands the notation to describe a VSELP structure with multiple static code books. From equation (6):

For digital cellular VSELP, k = 1 or 2; that is, two static code books are used. The three code books are
searched sequentially. First, the adaptive code book is searched for the optimal vector assuming yl = 0 and
y2 = 0. The technique used in searching the adaptive code book is described above. For the stochastic code
book searches, it is necessary to generate the zero-state response of each code vector to H(z). This is
accomplished by filtering each of the M (M=7) basis vectors for each code book through H(z) with the
history of H(z) set to 0 prior to filtering each vector. The resulting code vectors are defined by equation (8):

where qk,,(n) is the zero-state response of H(z) to the basis vector vk,,(n).

The result of the first search is the optimal lag value and the optimal bL(n) vector. The bL(n) vector times
its gain, p, represents the adaptive code book's contribution to the excitation signal. Next, the first
stochastic code book is searched, given bL(n). This results in an optimal code vector and corresponding
index (I) for the first code book, fl,l. Finally, the second code book is searched given b ~ (n) and fl,I(n). This
results in an optimal code vector and corresponding index (H) for the second code book, f2,H(n).

All of the searches in this implementation take full advantage of the 'C5x MAC instructions and are
optimized for speed.

Orthogonalization of the Code Vectors

The error signal generated after each of the code vectors from each code book is selected is:

and

NSF-1

Total weighted error = 1 e2(n)
n d

Given @ = 0 and bL(n) for the first code book search, optimal values for P, yl, and f l ,~(n) must be found.
This however, would be too computationally expensive for real-time performance. If the b ' ~ vector and
the each of the code vectors fl,I are orthogonal, then yl and the code vector can be jointly optimized
independent of P. By orthogonalizing each of the basis vectors to the b'L(n) vector, the entire space of code
vectors is orthogonalized. The Grahm-Schmidt algorithm is used to perform this orthogonalization as
follows:

and

NSF-I

Ym = 1 bVn)q,,.(n) for 1 r m r M
nsO

The orthogonalized, filtered basis vectors for the first code book are defined by:

The orthogonalized, filtered code vectors for the first code book are defined by:

M

f ,,,(n) = 1 Oi,,,q'l,m(n) for 0 r i I, 2M-I
m= 1

The new expression for the total weighted error for the first code book search is

NSF

E'1.i = z (p (n) - y,f'l,i(n))'

This expression is independent of b and bL and also assumes no contribution from the second code book.
The value for the gain is computed for each code vector but is not encoded yet. As stated previously, the
value for the gains of each of the vectors contributing to the excitation vector are jointly optimized after
all searches are complete.

The second stochastic code book search is identical to the first except that the basis vectors for the second
code book are orthogonalized to both the bL(n) vector and to the optimum code vector from code book 1,
f'l,I(n). This orthogonalization can be performed sequentially. The filter basis vectors, q~,.,(n), are first
orthogonalized to bL(n). The resulting vectors are then orthogonalized to f ' l,~(n).

The orthogonalized, filtered code vectors for the second code book are defined by:

M

f = 1 0imq'2,m(n) for 0 5 i r 2M-1
m= 1

The new expression for the total weighted error for the second code book search is

NSF

''2, I (P (~) - y2f 2,i(n))'

For the implementation of the fixed-point VSELP, a modified Grahm-Schmidt algorithm was used. The
difference between this Grahm-Schmidt and the one just presented is that this one is scaled by an energy
constant. This scale washes out in the code book search, yet avoids an expensive division and preserves
dynamic range.

Gray Code Search

In this section, a fast search procedure for finding the best code vector from the stochastic code book is
developed. As with the adaptive code book search, the vector that minimizes the MSE (that is, that
maximizes the match score) is sought. Note that the subscript denoting the first or second code book has
been dropped for clarity. The code search procedures are identical for each code book. The match score
is defined as:

The search procedure calculates the match score for each vector in the code book. The best code vector
(indexed by i) will have the highest match score of all code vectors in the code book. The computational
requirements for one subframe search of one code book is 2 x NSF multiply-accumulates (MACS). This
results in a code book search computational requirement of:

MACS codebooks) x 4 (S u F f E frames
NSF 2M(code book) 2(subframe

) x 50(-
S

) (19)

6 MACS) = 4.1 x 10 (T

To reduce this complexity, the structure of the VSELP code books is exploited. Defining the correlation
between the p(n) vector and the filtered code vector, f'i(n):

NSF

ci = 1 f ip(n)

Expanding f'i(n) using equation (8) yields:

Rearranging the summations yields:

Defining

then substituting this back into 22 yields:

Defining the gain of the filtered code vector, f'i(n):

NSF-I

Gi = 1 (f 1(n))2

Expanding f'i(n) using equation (8) yields:
NSF-I M M

Rearranging the summations yields:
M M NSF-I

= C 1 e i m e i j 1 q9j(n)q7m(n)
m = l j = l n = 0

Defining

and substituting back into equation (27) yields:

Because:

OijO,, = OimO1j

and:

O i j O i m = 1 for j=m

the equation can be expanded to:

Given two code words indexed by i and u such that u differs from i by only one bit (that is, bit position v),
then:

0," = -€Iiv (31)

cum = eim form != v (32)

The correlations Ci and C, are related by:

C , = Ci + 0,,RV

The gains Gi and G, are related by:
v-l M

Gu = Gi + 1 eujeuvDjv + 2 eujeuvDvj
j = l J = V + 1

If the code book is searched in a sequence such that the code vector index changes by only one bit from
the previous code vector index, then the previous set of equations leads to a very efficient method to search
the code book. By sequencing the indices using a Gray code, only one bit will change as the indices are
generated. In addition, only half of each code book needs to be searched because the other half is the
complementary set of code vectors (differing only by sign). The sign of Ci is checked to determine which
of the complementary code vectors yields a positive gain y. The resulting computational requirements are
now reduced to:

2M CR = 2 X 4 X 50 x {[2 x M1 x NSF + M1 + 281 + [y x (M1 + 2)]}

Gain Quantization
The gain values for each of the three code book contributions to the excitation vector are jointly optimized
using a vector quantization table. The development of the quantization procedure can be found in [I]. The
parameters required for the joint vector quantization of the gain values are:

where c'k(n) denotes the kth (k = [O ... 21) excitation contribution vector filtered through the H(z) synthesis
filter. Therefore, the upper triangular matrix R,, is the crosscorrelation matrix of the three filtered code
book excitation contributions.

where p(n) is the perceptually weighted speech minus the ringing in the synthesis filter from the previous
frame. The three-element vector Rpc is the crosscorrelation vector of the three filtered code book excitation
contributions with the p(n) vector.

where ck(n) denotes the kth (k = [O ... 21) excitation contribution vector (not filtered). Thus, the vector R,(k)
denotes the energy in each of the three code book excitation contributions.

Equation (39) defines the parameter RS, the energy in the LPC filter's residual signal.
NP

RS = NSF x R9,(0) x n (l - r 1 2)
I = 1

where R'q(0) is the average power in the current subframe of speech and the product series is the normalized
error power in the synthesis filter. R'q(0) is interpolated from Rq(0) at the subfrarne rate using the strategy
in Equations 40 - 42.

R'q(0) = Rq(0)prevlous frame for subframe 1

R'q(0) = Rq(0)current frame for subframes 3 , 4

R' JO) = JR~(o) previous frameRq(0)current frame for subframe 2

The error equation used in searching the quantization tables is:

where Po is the fraction of the coder excitation energy due to the adaptive code book contribution, PI is the
fraction of the coder excitation energy due to the first stochastic code book, and GS is an energy tweak
parameter (GS = RIRS). Note: (1 -PO -PI) is the fraction of the coder excitation energy due to the second
stochastic code book. The definitions of a through i follow:

The values PO, P1, and GS are vector quantized in a three-column table of length 256. For each subframe,
the index of the elements that minimize the error equation (43) is selected. The resulting code book gains
are defined by the following equations, where the subscript vq indicates the index of the best table entry.

For the fixed-point implementation, the energies are calculated and converted up front to floating-point
format. The parameters are then calculated in floating point because of the wide dynamic range. These
parameters are then scaled back to the 16-bit integer domain according to the largest of the parameters
(hence, the ratios between parameters are maintained.)

Speech Decoder

The speech decoder resembles the encoder with the following exceptions:

The coefficients for the LPC synthesis filter are not the bandwidth-expanded ones. They are
taken from the RC coefficients in the RX bitstream.

There is no closed-loop search procedure.

There is an adaptive postfilter in the signal flow.

The coefficients for the filter A(z) are interpolated at the subframe rate from the reflection coefficients
received at the frame rate. For each frame, the quantized reflection coefficients specified by the bitstream
are converted to direct form-filter coefficients. They are then interpolated using the same scheme as defined
in the interpolation section. The three code book indices are used to look up the correct vector in each of
the code books. Each selected vector is multiplied by its corresponding gain value as calculated using
equations (53), (54), and (55). The three scaled code book contributions are then summed to form the
excitation signal and applied as input to the LPC synthesis filter A(z). In addition, this excitation signal is
fed back into the adaptive code book. The output of the LPC synthesis filter is called the nonpostfiltered
speech vector. To mask the effects of quantization in the coder, the speech is filtered through a spectral
postfilter.

Adaptive Postfilter

The adaptive postfilter shapes the noise spectrum to match the speech spectrum, thus hiding the effects of
quantization in the VSELP coder beneath the formants of the speech signal [12]. Given the speech synthesis
filter, 1 /A(z), the postfilter is defined as:

where 0 5 bwfl 5 bwf2 < 1. With bwfl and bwf2 defined as bandwidth expansion factors (like the
bandwidth factors used in the perceptual-weighting filter), this filter boosts the formants in the speech
signal. Several methods exist for the implementation of the postfilter. Two methods are outlined below.

TIA Postfilter

A problem with the postfilter described above is the accentuation of the speech signal's spectral tilt. This
results in the attenuation of the higher frequencies of the speech spectrum. The method described in [I]
requires the use of a Levinson-Durbin recursion after the bandwidth expansion of the speech correlation
coefficients. The denominator coefficients are converted to autocorrelation coefficients and then
bandwidth expanded by w(i) = 0.923077(~ Xi) . Finally, these autocorrelation coefficients are converted
back to filter coefficients via a Levinson-Durbin recursion. This proves to be computationally expensive
and provides no quality improvement compared to the method described below. In addition to the spectral
shaping filter, a brightness filter is used to boost the high frequencies. The speech, after passing through
the filter H(z), is scaled to remove any gain introduced by the filter.

The scale value is then passed through a first order low-pass filter to remove discontinuities:

Scale'(n) = = 0.9875 x Scalel(n-1) + 0.125 x Scale (58)

Modified Postfilter

Rather than adjusting for the spectral tilt in the postfilter via adjusted numerator coefficients, this method
utilizes an adaptive brightness filter. The first reflection coefficient of the numerator filter is used as the
coefficient for the brightness filter. This method is described in [14]. This results in the same spectral effect
as the specified method, yet it is computationally less expensive. This is the method we used for our
implementation.

Features of VSELP

The code book described above allows a fast code book search to be conducted. Memory requirements are
also reduced since only the basis vectors are stored (not the entire code book). The selected code book index
is robust to channel errors because an error in the index changes only the sign of one of the basis vectors.
Most importantly, the gains associated with each of the vectors contributing to the excitation vector are
jointly optimized and quantized.

TMS320C5x Real-Time Implementation

The DSPSE implementation of VSELP on the TMS320C5x is written entirely in assembly code so that it
can fit on one 'C5x running at 20 MIPS. The two main functions, analysis and synthesis, are completely
modular and C callable. The memory and MIPS requirements are listed below.

Processing Requirements

The table below lists the processor utilization requirements for the TMS320C5x VSELP vocoder software.

Table 3. VSELP Vocoder Processor Requirements

t values reflect execution from zero-wait-state external SRAM and use of TMS320C5x internal RAM.

Application

Analysis

Synthesis

Memory Requirements
The table below lists the memory requirements for the TMS320C5x VSELP vocoder software. All memory
specifications are in units of 16-bit words.

Table 4. VSELP Vocoder Memory Requirements

MIPS
Maximum

16.10

3.60

The three on-chip memory blocks are bO, bl , and b2 and are used as follows:

Function

Analyzer

Synthesizer

Full Duplex VSELP

Block bO is a special block in that it is the only segment of RAM that can be switched into program memory.
This feature is useful for filtering operations such as the MACD instruction. Because this memory is
dynamically switched as program or data memory, no static variables reside in this block. However, this
block is used as temporary memory in the code book searches.

Utilization at
20 MIPS~

81%

18%

Block b l is used in two ways. The first 350 locations are used as temporary scratch-pad memory. The
remaining locations are used for time-critical buffers such as the intermediate weighted excitation vectors
and the stack.

ROM

8.2K

3.32K

9.OK

MIPS
Average

15.30

3.32

Utilization at
20 MIPS~

77%

17%

On-Chip RAM

1.5K

1.1K

1.55K

External RAM

0.23K

0.23K

0.42K

Total RAM

1.73K

1.33K

1.97K

Block b2 is used to overlay local temporary variables. This strategy not only saves memory but also allows
all local variables to be placed in fast dual-access RAM for maximum DSP performance.

Speech Coder Quality

Quality measures were used to compare the speech output of the fixed point VSELP (TMS320C5x) with
a C model of the TIA reference synthesizer. The input bitstream for each of five speakers (three male and
two female) produced five reference files, both postfiltered and nonpostfiltered. This same bitstream was
used as input to the 'CSx implementations of the VSELP coder. The resulting speech files were compared
to the reference files using the SNR measure described below.

SNR Measurements

To track the progress of algorithmic modification, the segmental SNR measure was used. The segmental
SNR is the average of the each subframe's SNR over some segment of speech.

NSF- l

1 si(n)'

where L is the length of the speech segment in subframes, si is the input speech, and sp is the synthetic
speech. This measure is used in testing vocoder implementations against the reference vocoder. For the five
reference files, the output of the synthesizer was compared to the output of the reference vocoder's
synthesizer. All the SNR values for the fixed-point implementation were distributed between 25 and 30 dB.

DTMF Performance

The VSELP algorithm must pass the dual-tone multifrequency (DTMF) signals to allow for remote
signaling and dialing. Several DTMF files were recorded and processed through the algorithm. The Fourier
spectra were analyzed for proper frequency content. In addition, the resulting files were used to signal the
central office and correctly initiate a telephone connection.

A Typical Digital Cellular Vocoder Configuration

Figure 4 illustrates a possible digital cellular system configuration. Analog speech sampled by the AID
converter is processed by the TMS320CS 1 digital signal processor to produce a VSELP coded bitstream.
This bitstream is passed through the error-coding block to protect the data against channel errors. Finally,
the error-coded VSELP bitstream is modulated and transmitted to the cellular base station. Since the digital
cellular telephone is full duplex, incoming RF data is simultaneously processed in the reverse order to
produce speech. The incoming signal is demodulated and error corrected before the VSELP synthesis
processing and D/A conversion.

Figure 4. Possible Digital Cellular System Configuration

Analog Speech RF Cellular Signal

DSP Chip

1

Code Availability

-

The associated software is available for licensing from DSP Software Engineering Incorporated, 165
Middlesex Turnpike, Suite 206, Bedford, MA 01730

-

References
1. "Vector Sum Excited Linear Prediction (VSELP) 7950 Bit Per Second Voice Coding

Algorithm", Technical Description, Motorola, Inc., November 1989.

2. Cellular System: Dual-Mode Mobile Station - Base Station Compatibility Standard, IS-54
Project Number 2215, Electronic Industries Association, December 1989.

1

3. Schroeder, M.R., and Atal, B.S., "Code-Excited Linear Prediction (CELP): High Quality
Speech at Very Low Bit Rates", Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing, March 1985, pp. 937-940.

4. Davidson, G. and Gersho, A., "Complexity Reduction Methods for Vector Excitation Coding",
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,
April 1986, pp. 3055-3058.

5. Gerson, I.A., and Jasiuk, M., "Vector Sum Excited Linear Prediction (VSELP)", IEEE
Workshop on Speech Coding for Telecommunications, September 1989, pp. 66-68.

AD50
or

TLC32044 5 -

6. Gerson, I.A., "Method and Means of Determining Coefficients for Linear Predictive Coding",
U.S. Patent #4,544,919, October 1985.

r
a o -
.g
%
(I)

A

'

7. Cumani, A., "On a Covariance-Lattice Algorithm for Linear Prediction", Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Processing, May 1982, pp. 65 1-654.

ND/A Converter

Error
Coding

8. Tohkura, Y., Itakura, F., and Hashimoto, S., "Spectral Smoothing Technique in PARCOR
Speech Analysis-Synthesis", IEEE Transactions on Acoustics, Speech, and Signal Processing,
Volume ASSP-26, December 1978, pp. 587-596.

TI
TMS320C51

Modem

9. Atal, B.S., Schroeder, M.R., "Predictive Coding of Speech Signals and Subjective Error
Criteria", IEEE Transactions on Acoustics, Speech, and Signal Processing, Volume ASSP-27,
June 1979, pp. 247-254.

r
0
a

I-
-

10. Kroon, P.. Deptrettere. Ed.F., and Sluyter, R.J., "Regular-Pulse Excitation: A Novel Approach
to Effective and Efficient Multipulse Coding of Speech", IEEE Transactions on Acoustics,
Speech, N I I ~ Signul Processing, Volume ASSP-34, October 1986, pp. 1054-1063.

1 1 . Linde, Y.. Buzo, A., and Gray, R.M., "An Algorithm for Vector Quantizer Design", IEEE
Trnnraction,. Communications Volume COM-28, January 1980, pp. 84-95.

12. Chen, Juin-Hwey. and Gersho, Allen, "Real-Time Vector APC Speech Coding at 4800 bps With
Adaptive Postfiltering", Proceedings oflEEE International Conference on Acoustics, Speech,
~ t r~ i l Sigrz~tl Procescing. April 1987. pp. 5 1.3.1-5 1.3.4.

13. Kemp. D.. Sueda. R., and Tremain, T., "An Evaluation of 4800 bps Voice Coders", Proceedings
($the IEEE I~lternntiotznl Conference orz Acoustics, Speech, and Signal Processing (ICASSP),
Glasgow. 1989. pp. 200-203.

14. Fenichel, R.. Proposed "Federal Standard 1016 (Second Draft)", National Communications
System, Office of Technology and Standards, Washington, DC 20305-2010, November 1989.

15. Campbell, J., Welch, V.. and Tremain, T., "An Expandable Error Protected 4800 bps CELP
Coder", Proceeclings of ICASSP, Glasgow, 1989, pp. 735-738.

16. Kroon, P., and Atal, B., "On Improving the Performance of Pitch Predictors in Speech Coding
Systems", Ahstructs qf' the IEEE Workshop on Speech Coding for Telecommunications, 1989,
pp. 49-50.

17. Kroon. P., and Atal, B., "Strategies for Improving the Performance of CELP Coders at Low Bit
Rates". Proceedirzgs of ICASSP, 1988, pp. 151-154.

18. Campbell, J., Tremain, T., and Welch, V., "The DoD 4.8 kbps Standard (Proposed Federal
Standard 101 6) in Advances in Speech Coding", edited by B. Atal. V. Cuperman, and A Gersho,
submitted to Kluwer Academic Publishers, 1990.

19. Macres, J.. "The First Real-Time Implementation of U.S. Federal Standard 4800 bps CELP
version 3.1 ", submitted to the Proceeding on Speech Technology '90, 1990.

20. Parsons, T.W., Voice uizd Speech Processing, McGraw-Hill, New York , New York, 1987.

21. Kemp. D.. Sueda. R., and Tremain, T., "Processing of Military and Government Speech
Technology '89". Media Dirnensions, 1989, pp. 86-90.

Part IV
Error-Correction Coding

U. S. Digital Cellular Error- Correction Coding
Algorithm Implementation on the TMS32OC5x

Manswr A. Chishtie
Digital Signal Processing Applications - Semiconductor Group

Texas Instruments Incorpomted

Abstract

Programmable digital signal processors are commonly used in U.S. digital cellular terminal designs. All
digital cellular transmitters employ convolutional and CRC codes to protect against channel-induced
errors. Receivers typically use Viterbi decoders and CRC syndrome checks to verify that the decoded data
contains no errors. This paper presents selected implementation examples of the error-protection and
correction functions of various cellular data channels using the TMS320C5x digital signal processor
family.

Introduction

Programmable DSPs are widely used in the new U.S. digital cellular (USDC) radio designs. The primary
function of the DSPs in these designs is baseband signal processing. However, many designs are also using
the newer DSPs as the system coordinator in the radio, a task typically performed by a microcontroller. This
trend is caused by a) system care-abouts of low cost, low power, and small form factor, and b) newer
generations of DSPs (such as the TI TMS320C5x family) that have architectures suitable for
microcontroller-type functions.

One of the several signal-processing-intensive tasks that a digital cellular radio needs to perform is error
protection and correction. The IS-54 voice channels transmit voice and control information in digital form.
Although these radio links are primarily used for digital voice transmission (VSELP), a portion of the
channel capacity is reserved for control information. This relatively slow bit-rate link is used for
background control information such as broadcast messages, mobile-assisted handoffs, etc. This is called
slow associated control channel (SACCH) in IS-54 terminology. Another type of signaling channel is
called fast associated control channel (FACCH). However, FACCH messages are not sent simultaneously
with the voice data. They replace the compressed voice data whenever necessary. Figure 1 shows how these
messages are multiplexed with voice data.

Figure 1. Voice and Control-Channel Multiplexing Over One Time Slot

FACCH I Data

Speech F b
SACCH I Data I

These three digital data channels employ extensive error-protection and correction mechanisms to protect
all or most of the transmitted information. Convolutional codes, CRC codes, and bit/frame interleaving
techniques are used for this purpose. The convolutional coding schemes used by these three channels are
not identical and require slightly different decoding methods to be employed by the receivers. Despite these
minor differences, the basic decoding algorithm used by the three channels is usually a Viterbi algorithm.
In the rest of this paper, these channel formats are explained separately, a suitable decoding scheme is
presented, and its implementation details are discussed.

VSELP Channel Format

The VSELP encoder compresses the digitized speech from 64 kbps to 7.950 kbps. Additional information
is added for error protection to increase the total data transfer rate to 13 kbps. The VSELP algorithm
operates on a frame-by-frame basis in which each speech frame is 20 ms in duration. The VSELP encoder
generates 159 bits of compressed speech for each speech frame. These bits are grouped into two classes:
77 class-I bits that need error protection and 82 class-I1 bits that are sent without any error protection.
Class-I bits are protected from channel-induced errors by applying convolutional encoding. Furthermore,
error detection is also provided by applying a 7-bit CRC code to the 12 most perceptually significant class-I
bits. Finally, this 260-bit speech frame is interleaved over two time slots to protect against burst errors.

Figure 2. Error Protection for VSELP Data

VSELP Systematic Framed
Voice CRC Convolutional Frame

Encoder Generator Encoder Interleaver

Class I

Class I I

-
12 -

7-Bit
CRC 7

1 . I
-
77 77

82 82

Rate-112
m = 5 178

Figure 3. Convolutional Encoder for VSELP Data

The VSELP convolutional encoder is a rate- 112 framed encoder with a constraint length (denoted by M)
of 5. The frame size is 89 bits (see Figure 2), which consists of 77 class-I bits, a 7-bit CRC, and 5 tail bits.
Both the initial and the final states are 0. The trellis diagram for this encoder consists of 32 states (that is,
2M) with each state in symbol interval n connected to two states in the next time interval n + 1. The basic
building block of this trellis is shown in Figure 4.

Figure 4. Representative Trellis Section for VSELP Convolutional Encoder

State i State j
Mx

State i + 16 State j + 1

I I b Time
n n + l

Due to the rate-112 encoding scheme, each state is linked to two states in the previous time interval, as
shown in Figure 4. The Viterbi algorithm operates on received data by expanding the trellis over a frame
length of 89 symbol intervals. Refer to [4] and [5] for general Viterbi algorithm descriptions. A 32-element
accumulated cost metric is set up where each element corresponds to one state. Each link from an old state

to a new state has a transition cost associated with it. For instance, Mx is the transition cost from state i to
state j in Figure 4. These transition costs. which are computed at the symbol rate, reflect the current channel
conditions. Each transition cost indicates the probability of a state i to state j transition over one symbol
interval. Consider Figure 4 where state j at time interval n + 1 can be reached from either state i or state i + 16
in time interval n. The Viterbi algorithm selects the more likely transition into state j by comparing the total
accumulated cost of the two possible links. The accumulated cost of each link is computed by adding the
current transition cost to its previous accumulated cost. For example, new accumulated costs of the two
links entering state j in Figure 4 are:

new-acc-cost u] = old-acc-cost [i] + Mx
(1)

new-acc-cost Ij] = old-acc-cost [i + 161 + My
(2)

The smaller of the two values is selected and the corresponding link is retained for further processing in
the next time interval. The other candidate is discarded. This process of selecting one transition entering
a state is performed on all 32 states at each symbol interval. Path history of every state is maintained for
the entire 89-symbol-long frame. When one frame is processed completely, the state 0 in the last time
interval is selected, and its associated path is considered the most likely received path. This path is traced
to find the most likely received bit sequence. As shown in Figure 2, the encoder pads five tail bits (all 0s)
at the end of each message frame. This ensures that the last encoder state is always 0. Additionally, the initial
state of the encoder is also 0 by definition. This requires special consideration by the decoder during
initialization of the accumulated cost metric at the beginning of each frame. To assure that state 0 is selected
by the algorithm at the beginning of each frame, it is initialized with a lower cost value than that of the other
3 1 states.

This algorithm can be implemented more efficiently if the underlying symmetry of the trellis structure used
is considered. As shown in Figure 4, a pair of states in a symbol interval are connected to another pair of
states in the next interval with no other connections to the rest of the trellis. Therefore, all state transitions
during one symbol interval can be uniquely broken down into 16 butterfly-like structures similar
to Figure 4. Furthermore, only two transition cost values are associated with the four links of each butterfly
(Mx and My in Figure 4; in some implementations, Mx is always equal to -My, which leads to further
simplification of the structure). This symmetrical structure allows a subroutine that will operate on one
butterfly at a time, computing new accumulated cost metrics, selecting the best transition, and storing the
path history. This subroutine (or a macro) is invoked 16 times at each symbol interval to update 32 state
transitions. Example 1 lists the pseudocode for this function.

Example 1. Pseudocode for Trellis Expansion

Acc-Metricl[n] +Curr-M[x]->AccB

Acc_Metricl[n+l6] + Curr-M[y] -> Acc

min(Acc,AccB) -> Acc_Metric2[m]

If (Acc > AccB) then

shift 1 in Trans-Tbl[i]

else

shift 0 in Trans-Tbl[i]

Acc-Metricl[n] +Curr-M[y]-7AccB
Acc_Metricl[n+l6] + Curr-M[x] -7 Acc

min(Acc,AccB) -> Acc_Metric2[m+l]

If (Acc > AccB) then

shift 1 in Trans-Tbl[i+l]

else

shift 0 in Trans-Tbl[i+l]

The pseudocode shown above performs necessary computations for two states. similar to the butterfly
structure shown in Figure 4. There are two accumulated cost metrics used by the code, Acc-Metric 1 [I and
Acc_Metric2[]. One contains previous cost metrics and the other is used to store new accumulated cost
metrics. At each symbol interval, roles of the two arrays are reversed. Only two array elements need to
be accessed by the subroutine. The offsets between those two elements are always 16 and 1 for the two
arrays, respectively. This allows for simple indexing of these arrays regardless of which state is currently
being accessed. Similarly, only two current metric values Curr_M[] are accessed by the function. The offset
between these two elements can also be made equal to 1 if this array is set up in the form of a circular buffer.
Finally, since the path history is stored for the two states j and j + 1 in time n + 1 , the two elements of the
transition table Trans-Tbl[] that need to be accessed are also offset by 1.

Considerable coding efficiency is gained by taking into account these structural symmetries of the trellis
butterfly. As showninpseudocode above, the accumulator and the accumulator buffer are used to hold total
accumulatedcost of the two links. The TMS320C5x DSPs support special instructions to select the smaller
(or larger) of the two values. The CRLT instruction and the conditional-execute instruction (XC) are used
in this implementation to select the lower cost link and update the accumulated cost array and the transition
table. Since the accumulated cost arrays are accessed only in steps of 1 or 16, indirect addressing modes
of postincrement and postmodification by an index of 16 are used to step efficiently through the table. The
current transition cost array, Cum-M[], consists of four elements representing four symbols of the rate- 112
encoder. It is set up as two circular buffers, each containing two elements. In Example 2, the code listing
shows the function implemented in 'C5x assembly code. It is set up as a macro that is invoked 16 times
to update all 32 states per time interval.

Example 2. Trellis Expansion Macro In 'C5x Assembly Code
*
* Entry Conditions:
*
* ARP = AR1
* INDX= 16
* AR1 -> AccMa[n] ;n=0..31
* CurrMPtr -> CurrM[i] ;i=0..3
* Circ.buffers: CurrM[O..l] and CurrM[2..3]
* AR3 -> AccMb[m] ;m=0..31
* AR4 -> Trn[k] ;k=0..(6*32)
*
* Exit Conditions:
*
* AR1 -> AccMa[n+l]
* CurrMPtr -> CurrM[i]
* AR3 -> AccMb[m+2]
* AR4 -> Trn[k+2]
*
Texpand .macro CurrMPtr

lacc *O+,CurrMPtr ; load AccMl[n]
add *+,arl ; add CurrM[x]
sacb I

lacc *O-,CurrMPtr ;loadAccMl[n+l6]
add *, ar3 ; add CurrM[y]
crlt ; change to crgt for correlation type metric
sac1 *+,ar4 ; min(pathllpath2) -> AccM2[m]
lacc *, 1 ; load Trn[i]
xc lrc ; if pathDpath2
add # 1 ; shift 1 in Trn[i]
sac1 *+,arl ; save Trn[i]

*
lace *O+,CurrMPtr ; load AccMl[n]
add *+,arl ; add CurrM[y]
sacb
lacc *0-,CurrMPtr ; load AccMl[n+l6]
add *,ar3 ; add CurrM[x]
crlt ; change to crgt for correlation type metric
sac1 *+,ar4 ; min(pathl,path2) -> AccM2[m+l]
lacc *, 1 ; load Trn[i+l]
xc 11c ; if pathDpath2
add # 1 ; shift 1 in Trn[i+l]
sac1 *+,arl ; save Trn[i+l]

*
mar *+
. endm

Path History Memory Organization

Path history is generated by the decoder during the forward pass as it expands the trellis. Given that each
encoder state can only be reached from one of the two possible states in the previous symbol interval, a
single bit can be used to store this information. The state transition table Tm[x,y] is a 32 X 6 word matrix
in which each bit position in a row of elements corresponds to one symbol interval. Each row element in
a column corresponds to one of the 32 encoder states. In other words, if Tm[x,y] is the matrix
where x = 0 ... 3 1 , and y = 0 ... 5, then x corresponds to the encoder state and (1 6y +bit position) corresponds
to the symbol interval.

Figure 5. Transition Table Organization

XXXX.. .XXX n XXXX.. .XXX

Symbol Intervals

XXXX . . . XXX

Trace-Back

Trace-back starts from state 0 in the 89th symbol interval. The corresponding bit in the transition table
indicates which state is linked to it in the 88th symbol interval. This bit is the decoder output in the 89th
symbol interval. Next, the decoder jumps to the selected state in the 88th symbol interval, generating the
next output bit. This procedure is repeated until all 89 symbol intervals are traced back, producing one
frame of decoded output. Example 3 shows this algorithm in pseudo-C code.

Example 3. Trace-Back Function - Pseudo-C Code

state = 0;

n = 0;

for (word=6; word>=O; word--) {

for (bitno=15; bitno>=O; bitno--) {

if (Trn[state,word].bitno == 0) {

store 0 in Output[n++];

state = state>>l;

1
else {

store 1 in Output[n++];

state = (state>>l) + 16;

1
1

1

This trace-back function is implemented on the 'C5x using its zero-overhead loop structure. Indirect index
addressing is used to step through the transition table efficiently. The INDX register holds the current state
ID (0 to 15). Bit-reversed addressing is used to left-shift the INDX register for each iteration. Dynamic bit
testing is done by using the TREG2 register as a bit pointer to each element of the transition table.
Example 4 lists this 'C5x assembly routine.

Example 4. Trace-Back Implementation in 'C5x Assembly Code

TraceBack:

lar arO,#O ; arO is n of Trn[n] (0..31)

lar ar3,#OutBuf ; ar3 -> OutBuf[O]

lar ar4, #Trn ; ar4 -> Path history table

lacl #1

samm dbmr ; initialize mask

lacl #16-1

samm brcr ; initialize loop count

lacl #15

samm treg2 ; initialize bit pointer

*

rptb trace--1 ; loop 16 times

mar *,ar3

sar arO,*

apl *+,ar4 ; save OutBuf[i]

mar *0+

bitt *0-,arO ; test bit(i) of Trn[state,word]

mar *brO+ ; right-shift INDX by one

xc 1,tc ; if bit(i) == 1

adrk 16 ; add 16 to INDX

sub # 1 I

samm treg2 ; decrement bit pointer

trace:

ret

FACCH Channel Format

The FACCH is a signaling channel in parallel with the speech path used for transmission of control and
supervision messages between the base station and the mobile station. The FACCH replaces the user
information block (that is, speech data) whenever necessary [I]. An FACCH message block consists of a
48-bit message frame, a 1-bit continuation flag, and a 16-bit CRC. The standard CCIlT CRC-16 code is
generated for 49 information bits (1 continuation and 48 message) and eight bits of DVCC color code. The
FACCH data (48-bit message, 1-bit continuation, 16-bit CRC) is error protected by means of a rate-114
convolutional code. The resulting 260-bit frame is interleaved over two consecutive bursts in the same
manner as the VSELP speech frame.

The rate-114 convolutional encoder has a constraint length of 5. In other words, it operates as a shift register
of length 5. Each new bit shifted in results in four parity bits being shifted out of the encoder that are
designated P1, P2, P3, and P4. Figure 6 illustrates the encoder shift register.

Figure 6. FACCH Rate-114 Convolution Encoder

The 65-bit input frame to the encoder consists of 48 bits of data, a 1 -bit continuation flag indicating whether
this is the first word of a message, and 16 bits of CRC code. The encoder does not require five explicit tail
bits, as was the case with the VSELP rate-112 encoder. It treats each input frame as a 65-bit circular buffer.
The first five bits in each input frame constitute the initial encoder state (that is, C[4], C[3], C[2], C[1],
C[O]). The first output bit quadruple (PI, P2, P3, P4) is generated when the sixth bit is shifted in. After
shifting the 65th bit in, bit 0 is input to the encoder, creating the circular buffer. The final encoder state is
(C[3], C[2], C[1], C[O], C[64]). Note that after one more shift, the encoder state would return to its initial
state. In terms of the corresponding trellis structure, this means that there is always a wraparound from the
final encoder state to its initial state.

The FACCH decoder is similar to the VSELP decoder except for the following considerations:

It decodes rate-114 code instead of rate-112 code.
The encoder frame is 65 bits long.
Each encoder frame is treated as a circular buffer.

The basic Viterbi algorithm in this case remains identical to the VSELP rate-112 algorithm. There are two
paths entering each state from the previous symbol interval. The decoder selects the lower cost link, based

on its accumulated cost. However, since each output symbol consists of four bits, there are possibly 16
distinct transition costs that need to be updated at every symbol interval. The rest of the algorithm is similar
to the speech decoder algorithm except that the frame size is 65 bits instead of 89 bits.

Since the encoder initial state is not previously known in this case, all states are equally likely in the first
symbol interval. Hence, all accumulated costs are initialized to 0 at the beginning of each frame. This can
result in poor initial performance of the decoder under low signal-to-noise (SNR) conditions. According
to Forney [4], the Viterbi decoder output is unreliable until a path history of four or five times the
encoder-constraint length is available. Therefore, the first 20 to 25 decoded bits can contain errors. This
problem can be alleviated by considering the final encoder state (in the 65th symbol interval) and the initial
encoder state (in the first symbol interval) wraparound. Each received frame is treated as a 65-symbol-long
circular buffer, and the decoder is fed with a total of 85 symbols (composed of a 65-symbol frame and 20
repeated initial symbols), thereby generating an artificially long path history. Since 20 initial symbols are
repeated, a portion of the path history is redundant. Ideally, path history that corresponds to the first 20
symbol intervals and the last 20 symbol intervals should be identical because it corresponds to the same
20 symbols. However, the trellis generated for the last 20 symbol intervals is more reliable because it takes
into account the path history of the previous 65 symbols. Accordingly, the path history of the first 20
symbols is pruned. This approach is taken to avoid the uncertainty of the decoder decisions during the first
20 input symbols. After all the symbols are input to the decoder, the best path (of the possible 32 paths)
is selected based on least accumulated cost. This path is traced back to yield the output bit sequence.

Code Availability

The associated program files are available from the Texas Instruments TMS320 Bulletin Board System
(BBS) at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com.

References
1. Cellular System: Dual-Mode Mobile Station - Base Station Compatibility Standard, IS-54

Project Number 2215, Electronic Industries Association, December 1989.

2. TMS320C5.x User's Guide, Texas Instruments, 1993

3. Pawate, B. I., "Wireless Communications: A Systems Perspective", Texas Instruments, 1992.

4. Forney, G. D., Jr., "The Viterbi Algorithm", Proceedings of the IEEE, March 1973.

5. Viterbi, A. J., "Error Bounds for Convolutional Codes and an Asymptomatically Optimum
Decoding Algorithm", lEEE Transactions, Infinity Theory, April 1967.

Viterbi Implementation on the TMS320C5x for
K32 Modems

Mansoor A. Chishtie
Digital Signal Processing Applications - Semiconductor Group

Texas Instruments Incorporated

lntroduction

Error-control coding plays an increasingly important role in today's communication systems. Described
concisely, error-control coding involves the addition of redundancy to transmitted data so as to provide
the means for detecting and correcting errors that inevitably occur in any real communications process [I].

Such coding techniques are particularly useful for transmission over limited-power channels like
general-switched telephone network (GSTN). Adding redundancy to the transmitted data and making use
of soft-decision decoding, the bit-error rate can be reduced considerably without increasing transmission
power. These coding techniques have proved very useful in the past decade, and many of them have been
standardized for modems and other communication devices.

CCITT recommendation V.32 is one such standard that uses trellis-coded modulation and Viterbi decoding
to achieve forward error correction at a data transmission rate of 9600 bits per second (bps). This
application report deals with the general theory and implementation of the encoding and decoding
algorithms required for the V.32 family of modems.

The architecture of the fifth generation of Texas Instruments digital signal processors (DSPs) is especially
suited for soft-decision encoding and decoding algorithms. These dynamic programming algorithms often
make use of looped code, conditional execution, min-max searches, and pointer-addressing techniques.
The enhanced TMS320C5x core CPU allows zero-overhead looping, multiple-condition branches,
delayed jumps and calls to minimize execution time, min-max instructions to implement efficient search
algorithms, and postmodified indirect addressing (which includes indexed, circular, and bit-reversed
addressing modes). These algorithms can be executed very rapidly since almost all 'C5x instructions take
only one machine cycle (25 ns) to execute.

Introduction to the V.32 Standard

V.32 modems are designed for use on connections on GSTNs and on point-to-point 2-wire leased
telephone-type circuits. The full-duplex mode of operation is supported using echo-cancelation techniques
for channel separation. Each channel uses quadrature amplitude modulation (QAM) with a synchronous
line-transmission rate of 2400 symbols per second (baud).

QAM is a modulation technique that allows two independent information channels to be modulated into
a single carrier signal. These two channels are commonly referred to as real and imaginary (or I and Q)l
components of the signal. A constellation diagram illustrates this concept (see Figure 1). Each point on the
constellation has a unique set of real and imaginary components. For a 16-point constellation, four bits are
required to uniquely represent each point.

If the input data stream is grouped into quad bits (also called symbols), each quad bit can be mapped to a
constellation point, and corresponding I and Q values are modulated into a QAM signal. V.32 modems have
a data-transmission rate of either 4800 bps or 9600 bps. At the rate of 9600 bps, either a 16-point or a
32-point constellation can be used (see Figure 1). Obviously, 5-bit-long symbols are required to map each
point of a 32-point constellation.

I and Q components are also referred to as X and Y in literature. Both notations are used interchangeably in this paper.

79

The V.32 standard recommends two alternative modulation schemes at 9600 bps: one using a 16-point
constellation, and the other using trellis (convolutional) coding with a 32-point constellation. When using
the trellis coding, the input data stream to be transmitted is divided into groups of four consecutive data
bits. The first two bits of each group are first differentially encoded and then convolutionally encoded to
generate a set of three bits. The other two bits are not encoded but are passed to the output stage. Thus, each
output group consists of five bits. These five bits are then mapped into a 32-point (diamond-type)
constellation. On the receiver end, a maximum-likelihood decoding algorithm (due to Viterbi) is used to
estimate the transmitted data.

This report deals with the encoding and decoding algorithms as required for the 9600-bps 32-point
constellation transmission. The basic encoding algorithm is known as a convolutional encoding scheme,
and the decoding algorithm scheme is based on the Viterbi algorithm. Although the 32-point constellation
is used extensively to help decode the signals, the actual modulation/demodulation scheme is not
implemented in software.

Figure 1. V.32 Modems

(a) V.32 Modems Constellations

For 9600 bps
Without Trellis Modulation

16-Point QAM

For 9600 bps
With Trellis Modulation

32-Point QAM

I m

Real

Each point corresponds to
a 5-bit output symbol.

(b) V.32 Modems Constellation Regions

Real

11100 11011

Standard V.32 Encoder

The V.32 encoder (see Figure 2) is divided into two functional blocks:

Differential encoder
Convolutional encoder

The input data stream to the encoder is divided into 4-bit long symbols (Ql, 42 , Q3, 44). Each symbol
is processed by the encoder, and the resulting output symbol is 5 bits long (YO, Y 1, Y2,Q3,Q4). The output
symbol is larger than the input symbol because it contains error-correction information in addition to the
transmit data.

Figure 2. V.32 Encoder

L---- - i I
Differential

Y1, = Q1, a Y1,-1 Convolutional Encoder
Y2,=(QIn*YIn-1) $ Y2,-1 $ Q2,

The V.32 standard recommends the QAM technique to transmit data over the channel. Without any error
correction information, each symbol has four bits, requiring a 16-point constellation as shown in Figure
2. If a convolutional encoding scheme is employed, each symbol has five bits, and a 32-point constellation
is required.

In general, for the same average power, a modulation scheme using a 32-point constellation has higher
bit-error rate (BER) when compared with a 16-point constellation scheme. This is because the minimum
Euclidean distance between any two points on a 32-point constellation is relatively small, which decreases
the noise margin. However, convolutional encoding introduces constraints in transforming an input symbol
to a 5-bit output symbol. Specifically, it does not allow two consecutive output symbols to be in the eight
neighborhood positions of each other, as seen on the constellation diagram. The minimum distance
between two consecutive output symbols is thereby increased, thus providing an overall performance gain
of 3 dB.

The differential encoder provides protection against 180" phase ambiguity in the channel. The following
two equations describe the differential encoding algorithm:

Yl, = ~ l , @ Y l , - l

~ 2 , = (Ql, y ln-1)@y2n-1 @ Q2n

Notice in Figure 3 that only two input bits are differentially encoded. Because of differential encoding,
errors caused by phase reversal in the channel are not allowed to propagate, and the information sequence
is reconstructed by the receiver except for the errors at points where phase reversal has occurred [I].

Figure 3. Viterbi Encoder - Convolutional Encoding Scheme

From Differential
Encoder
:1,12:

3 Bits of Memory

Redundant
Bit

Definitions: Convolutional Encoder

- SO, S1, and 52 are called delay states
- YO, Y1, and Y2 are called path states

Constraint condition:

- Given a particular set of dela states (SO, S1, S2),
not all path states (YO, Y1, Y$) are possible.

The convolutional encoder takes the two differentially encoded bits (Yl, Y2) and generates an output bit
YO. YO is often called the redundant bit because it carries only the forward error-correction information.
Functionally, the convolutional encoder is a 3-bit shift register interconnected by AND and XOR logic. A
simplified diagram of a convolutional encoder is shown in Figure 3. By convention, the three bits of
encoder memory (SO, S1, and S2) are called delay states, and the set of output bits (YO, Y1, and Y2) are
known as path states. The idea behind this terminology will become obvious later when the trellis structure
is considered. The size of encoder memory is sometimes referred to as its constraint length.

One important constraint is imposed by the encoder. Given a particular set of delay states (SO, S 1, and S2),
not all path states are possible in that time interval. For instance, given a delay state (0, 0 , l) for the encoder,
only four path states (O,O, O), (0, 1, O), (1, 0, O), and (1, 1,O) are allowed in next time interval.

This leads to the concept of trellis structure. Since the encoder is essentially a finite-state machine, a
finite-state diagram may be used to represent it. There are eight possible delay states of the encoder. At any
given time, only one delay state (SO, S 1, or S2) represents the encoder. In the next instant, only four delay
states are possible instead of eight. The particular path chosen at that time depends on the current path state
of the encoder (hence, the name path state). The trellis diagram (Figure 4) concisely illustrates all possible
transformations from one delay state to another, along with their corresponding path states.

Figure 4. V.32 Modem Trellis Diagram

Path States
YO, Y1, Y2

NOTE: Finite-state diagram forthe convolutional encoder showing the relationship between delay and path states. Not
all delay states can be reached from a previous delay state.

Viterbi Decoder

The Viterbi algorithm is based on a soft-decision maximum-likelihood decoding technique. The main
function of any decoder is to select the most likely output. A simple hard-decision decoder selects a code
word that differs from the received sequence in the smallest number of positions. In other words, the code
word is chosen that minimizes distance between the received signal and the code word. A soft-decision
decoding scheme makes use of past history and reliability information to decode incoming data. A
necessary ingredient of any soft-decision decoder is a suitable distance (or cost) function.

A cost function may be unique to each modulation technique. Two widely used cost functions are the
Hamming distance and the Euclidean distance functions [2]. The standard Viterbi algorithm does not
specify any particular cost function. The Hamming distance function is suitable for binary signals. For PSK
and QAM signals, the Euclidean distance function on their respective constellations is appropriate. For an
added white gaussian noise (AWGN) channel, the farther the received signal from a point on the
constellation, the less likely that it corresponds to that point. Therefore, the distance between the received
signal (as it is mapped on the constellation) and a hypothesized output point on the constellation makes a
good cost function for any QAM signal. Since V.32 uses QAM modulation, the distance estimate on its
constellation is used as the cost function.

Figure 5. Viterbi Decoding - Output Tracking and Cost Function

SO, S1, S2 SO, S1, S2 SO, S1, S2 YO, Y l , Y2 SO, S,1 S2

Time

Figure 7 shows an expanded trellis diagram over several symbol time intervals with the x axis representing
time and the y axis representing the eight possible delay states of the encoder. The encoder may attain only
one delay state at any given time, but the decoder keeps track of all the possible states until it decides which
one to select. This is the essence of soft-decision algorithms in which the actual decision is delayed until
more information is available. Ideally, the maximum-likelihood method looks at the entire stream of input
before making any decision about the output. Clearly, this approach is not feasible for real-time
applications due to two factors:

Euclidean Distance

Imaginary Between the Actual Input

/ and a Constellation Point

Prohibitive memory requirements, even for relatively small blocks of data
Inherent time delay before the decoder selects an output

Out of the four possible path
states, the one that has the minimum
cost value is chosen. The rest are
discarded.

a a - -
For QAM modulation, one
appropriate cost function is
the Euclidean distance function
on the constellation.

The more practical approach taken by Viterbi is to consider only a finite length of input data before making
a decision about the output. The decision-making process relies heavily on the cost function.

'i ' 0 '
I1

a a - - Real
lb

11

To understand this algorithm, consider the expanded trellis diagram as shown in Figure 7. At each time
interval, there are eight possible delay states. Since the decoder must keep an "open mind" until it is time

to select the most likely output, all eight states are considered as possible representations of the encoder
in that time interval. A particular delay state can be approached only by four states from the previous time
interval (see Figure 5). The decoder selects only one of these four states so as to establish a link between
the previous time interval and the current one. Note that each link is identified by the path state it represents.

Each path state consists of three bits of a 5-bit symbol. Therefore, one path state uniquely identifies a set
of four constellation points. The V.32 signal space mapping is defined in such a way that each set of four
points is symmetrically arranged and equally spaced on the constellation, as shown in Figure 6.
Furthermore, each set of points is spaced as far apart as possible on the constellation. At the beginning of
each sample interval, the decoder compares the received signal with each set and selects the point from each
set that is closest to the signal. Essentially, this is a form of hard decoding, but its effect on the quality of
the decoder performance is not significant. This is because each set of four points is widely spaced on the
constellation so that any noise perturbation is less likely to affect these estimates.

Figure 6. V.32 Modem - Signal Element Mapping

lmaginary

. . .

lmaginary

. .
Real Real . . .

YO, Y1, Y2 = 110 . YO, Y l , Y2 = 000

Imaginary Imaginary

Bit Sequence = YO, Y1, Y2, Q3, Q4

.
El

. . a .
-

El
. . a . . O .

Eight constellation points are selected, and their respective distances from the received signal are
computed. Each point corresponds to a different path state. Since each link in Figure 5 is identified by a
path state, these computed distance values are associated with each link.

By selecting all eight links, connections are established between the delay states at the current time and the
previous time (see Figure 7). In this way, eight independent path traces are stored in memory. The cost
function is now updated for each of these path traces. The cost function is the sum of distances associated
with each link of a path trace.

. .
Il El .
O

- - - Real -
0 E l * . . q . YO, Y1, Y2 = 010 . . .

.
O

a E 3 . M
Il .

- - - - Real
f l . . . q
Il YO, Y1, Y2 = 101 .

Figure 7. Viterbi Decoding - Dynamic Programming

Time
b

For every time increment, the minimum cost line is
chosen for each of the eight delay states.
Eight independent path traces are stored in memory.
For each track, current cost is accumulated a s it hops over
the delay states.
The state with the minimum accumulated distance is
selected to receive output.

Of the eight path traces, the one that has minimum cost (or accumulated distance) is selected as the most
likely path to receive the output. The selected path is traced back, and the 3-bit path state value (YO, Y1,
Y2) that is associated with the last link stored in memory is the result of the Viterbi algorithm. Note that
this 3-bit result does not uniquely identify a 5-bit output symbol. The four constellation points that
correspond to the 3-bit result are compared with the input corresponding to that time interval, and the 5-bit
value associated with the point that is closest to the input is the output of the decoder. Since the output of
the decoder corresponds to the time period of the last link, it lags the input of the decoder by the length of
the path history maintained by the decoder. It is experimentally determined that the optimal length of a
Viterbi decoder is four or five times the constraint length of the convolutional encoder [I]. The V.32
encoder has a constraint length of 3, and the decoder keeps a path history of the past 16 time intervals.

Algorithm lmplementation on the TMS320CSx
The three most useful features of TMS320C5x for the Viterbi algorithm are circular buffers,
minimum-maximum instructions, and zero-overhead loops. Circular addressing is used extensively
throughout the decoder algorithm to access the distance tables, stepping through the path and delay states,
and tracing back the past path states to get output. Minimum-maximum value instructions are used in search
algorithms to compute minimum Euclidean distance for each state and to find minimum accumulated
distance at each time interval. Since the algorithm is based on a dynamic programming technique, it tends
to have a multiple looped structure. The zero-overhead loops of TMS320C5x are frequently used by the
decoder program.

Encoder lmplementation
The V.32 encoder block diagram is shown in Figure 2. As previously explained, it has two functional
blocks: the differential encoder and the convolutional encoder. The encoder program flow is shown in
Figure 8.

Figure 8. V.32 Encoder Program Flow

lNlT

START

UNPACK

Initialize

lnput Bits I I I '

I Differentially Encode
Two lnput Bits Q1, Q2 I
Conventionally Encode

the Output of the Differential
Encoder

I Pack 5 Output Bits
1

DIFF

ENCODE

PACK

The initialization routine INIT sets up auxiliary registers to point to input and output tables and resets the
delay states (SO, S1, S2) to 0. This ensures that the initial state of the encoder is known beforehand. It is
useful from the decoder point of view because the decoder initializes the cost of delay state 0 to 0 so that
this state is always selected in the very first time interval.

The encoder expects the input symbols to be stored in the table PCKD-IP with each element of the table
containing aright-justified Cbit symbol. The table input method is employed because of its simplicity. For
real-time applications, other techniques can easily replace the default method. If the input data is coming
from an ADC, a simple approach is to create two buffers. One is read by the encoding algorithm, while the
other is filled with incoming data by an interrupt service routine. In case the encoding process is required
to be synchronous with incoming data, no data buffer is needed. At every symbol time, the input symbol
is read from a peripheral device, and the resulting 5-bit output symbol is sent to another external device.

The encoding algorithm operates on binary inputs. Therefore, each input symbol is unpacked into four
words (which correspond to each bit) before any processing is done. The UNPACK section uses a
zero-overhead block-repeat loop and PLU instructions to perform the unpacking operation.

UNPACK : LACC LOCATE ; G e t packed i n p u t b i t s

RPTB LOOP1 ;For i=O; i<=3;++i

SACL * ;Save t h e word

APL * - ;Keep LSB o n l y

LOOP 1 : SFR ; S h i f t r i g h t t o g e t n e x t b i t

The DIFF function differentially encodes two input bits according to Equation (1) and Equation (2) on page
83. Its output overwrites the original two input bits located in INPUT table. Next, the convolutional encoder
processes these two bits and generates a redundant bit YO. The encoder state (SO, S1, S2) is stored in the
STATMEM table, and it is updated each time a new redundant bit is generated.

Finally, the resulting five output bits (OUTPUT + INPUT) are packed into a single word by the PACK
function. This output word contains five right-justified bits (YO, Y1, Y2, 43 , Q4), and it is stored in the
output buffer PCKD-OP in sequential order. Note that these five output bits could be sent to a DAC or a
front-end modulator instead.

Viterbi Decoder Implementation
In contrast with the convolutional encoding algorithm, the Viterbi decoding algorithm is computationally
more complex and numerically more intensive. In general, the execution time of the decoding algorithm
is significantly greater than the execution time of the encoder algorithm. This section describes the
algorithm in detail as it is implemented on the TMS320C5x. Although the code presented here is designed
for the V.32 modem standard, it could easily be transformed for any other application of the Viterbi
algorithm.

Figure 9. Decoder Flowchart

-
IN IT Initialize I

I
Find Minimum Accumulated

Distance; Select MIN-ACC-

I l l ' RD-DATA Read Input Data I

Identify lnput
GET-RGN Location on

Constellation

GET-CUR-
Dl ST

GET-ACC-
Dl ST

Compute Current
Distance for

Each Path State;
Update DlST

Table -
Compute

Accumulated Distance
for Each Delay
State; Update

ACC-DIST Table

I Trace Back From I
Selected Delay State; I Get Path State of

I GET-PATH

I Last Time Period I -
Unscramble Path

State; Find Nearest
Constellation Point

That Corresponds to
That Path State

GET-SYM

Differentially
Decode Two MSBs -1 of 5-Bit Output DIFF

Symbol

The decoder program flowchart is shown in Figure 9. Each process block in the flowchart corresponds to
an independent function. The modularity of each block is sacrificed somewhat to gain execution efficiency.
In other words, each block is integrated, to a certain extent, with the block that precedes it. The results of
a block are frequently passed in internal registers to the next block. However, all system variables are
defined explicitly in the beginning, and the line-by-line comments in the source code help identify where
the results are being stored.

The initialization routine INIT is called to set up tables and variables. The ACCDIST table, which holds
eight accumulated distance values for each delay state, is initialized by this function. As discussed in the
Standard V32 Encoder section on page 82, the first state of the encoder is always (0,0,0) (that is, state 0).
To ensure that the decoder always chooses state 0 in the first time interval, the initial accumulated cost of
state 0 is set to 0 while the rest of the states are set to a cost of 0.5.

The routine RD-DATA is called once every symbol interval to read new data. This is the only routine that
needs to be rewritten to suit each application. The code presented here is not designed for any specific
hardware. It assumes that some test data has already been stored in the TST-INP table before the decoder
is invoked. The input is in the form of 5-bit symbols output by the encoder. Two look-up tables, XLOC and
YLOC, convert each symbol to its equivalent real and imaginary axis values (also called XY or IQ values).
The channel noise and distortion effects may be added to the I and Q channels independently. The resulting
values are saved in variables CURR-X and CURR-Y for later use. This approach is taken so that test data
and channel noise data may be computed independently of each other and stored in respective tables before
the decoder is invoked. Obviously, this is not a real-time approach. The front-end demodulator can provide
I and Q values directly to the device. In that case, RD-DATA is required to save only those values in
CURR-X and CURR-Y locations. Each I and Q (or X and Y) input can have a maximum resolution of
16-bits.

Once the current input is located on the constellation by X and Y values, eight constellation points
corresponding to the eight path states that are closest to this input point must be identified. Note that each
path state corresponds to four unique constellation points (see Figure 6). The brute force method of
determining these constellation points is to consider each group of four points individually, compute the
distance from each point to the input, and select the closest one. This requires all 32 points that compose
the V.32 constellation to be considered for each input symbol. Another way to make the selection is to use
a look-up table. Since the locations of the constellation points are known beforehand, it is simpler to
identify the region where the input lies and use a table to determine the eight points that are closest to that
region. As shown in quadrant I in Figure l(b), there are 13 distinct regions in each quadrant of the
constellation. Each region has a unique set of eight constellation points (corresponding to eight path states).
A table called REGION is set up in data memory that contains 13 macro elements, each element having
four subelements corresponding to four quadrants of the constellation. Each subelement is a set of eight
pointers to the closest constellation points.

To identify the region where the current input lies, the following decision algorithm is used, where X,Y
is the location of the current input on the constellation shown in Figure l(b).

If 1x1 <= 1 Then
If I Y I <= 1 Then

Region#l
Else

If IYI<= 2 Then
Region#4

Else
Region#6

Else
If 1x1 <= 2 Then

If I Y I <=1 Then
Region#2

Else
If I Y ~ <=2 Then

Region#5
Else

If / Y I <= IxI+~ Then
Region#lO

Else
Region#8

Else
If ~ Y I <= 1 Then

Region#3
Else

If I Y I z I x I + ~ Then
Region#13

Else
If I Y I <= 1x1-1 Then

If (Y(<= 2 Then
Region#7

Else
Region#12

Else
If I Y I <= 2 Then

Region#l 1
Else

Region#9

After identifying a region, a quadrant is selected according to the polarities of X and Y.

Refer to the GET-RGN function of the decoder source code for implementation details. Note the use of
delayed conditional branches and the XC instruction to avoid flushing the pipeline. The result of the
GET-RGN function is a pointer to the REGION table.

The current cost of each path state is defined as the distance from the current input to the respective
constellation point. The result of the GET-RGN function points to a set of eight constellation points. If
(X,Y) is the input for a given time interval, and (Xk,Yk) are eight constellation points that correspond to
state k (where k = 0...7), then the current distance table is defined as:

DIST [kJ = (Xk-x)' + (Y ~ - Y) ~ ; k = 0...7 (3)

The square root operation is not performed because it is time-consuming. Although the square root function
is not linear, distance values without the square root operation work well because the relationship between
x and sqrt(x) is one-to-one and monotonic. The GET-CUR-DIST routine performs this computation for
each path state.

STATE0 :
LAR
MAR
LACC
SUB
SACL
SQRA
ADRK
LACC
SUB
SACL
LACL
SQRA
LTA
SACH
MPY
SPH

AR2,*+,AR2
*o+
*
CURR-X
DIFF-X
DIFF-X
#3 2
*,o,ARo
CURR-Y
DIFF-Y
#O
DIFF-Y
SMALL
DIST, 4
DIST
DIST

;Get address of 1st point out of 8
;Add XLOC, AR2 points inside XLOC
;Get x value of 1st point
;Subtract current x value
;Save (Xc-Xi)
;P=(Xc-Xi) ^2
;Now AR2 points inside YLOC
;Get Y value of 1st point
;Subtract current y value
;Save (Yc-Yi)

;P=(Yc-Yi) ^2, ACC=(Xc-Xi) -2
;ACC=(Xc-Xi) ^2+(Yc-Yi) ^2
;Save acc. distance*2*4

;Save distance*O.l in 1st location

The distance or cost values are stored in an 8-word DIST table. Each element of the DIST table corresponds
to a path state. The order of storage in the table shown in Figure 12 is not a simple ascending or descending
form. The reason for this scrambled order is explained later.

Figure 10. Delay State Linking

Past Current
Delay Delay
States States

00 1 Path States
000 0

00 1

01 0 0 010

Previous Time Interval Current Time Interval

The next step is to accumulate the cost (or distance) for each delay state at the current time. As previously
explained, at every time interval there are eight delay states (SO, S 1, S2). Each delay state at the current
time interval is linked to four delay states from the previous time interval, as shown in Figure 10. The
minimum cost link is identified, and the distance value of the selected link is added to the accumulated cost
of the delay state from which it originates. This gives the accumulated cost of the current delay state.

In addition to the accumulated cost, the following information needs to be stored for each delay state:
The path state that identifies the link selected
The delay state of the previous time interval that is linked to the current delay state

The code to perform these functions is:

STATE 0 :
RPTB
LACC
ADD
CRLT
NOP
XC
SAR
SAR
MAR
MAR
MAR

ENDBO :

;For (i=O;i<=3;++i)
;Get prev. accumulated distance
;Add current distance
;If acc < prev. largest
;Then
;Update PAST-DLY & PAST-PTH locations
;Pointer to ACCDIST -> PAST-DLY
;Pointer to DIST -> PAST-PTH
;ARP = AR1
;ARl++ (circular addressing)
;AR2++ (circular addressing)

Pointers to the past path and delay states are stored in the PAST-PTH and the PAST-DLY tables. Since
the decoder bases its decision on the path history of the previous 15 time periods, these two tables span 16
time periods (including the current time period). The length of each table is 128 words (16 time periods
x 8 states). At each time interval, the GET-ACC-DIST routine adds new information to the tables and
discards the oldest eight states. The format of these tables is shown below.

Figure 11. 128-Word Circular Buffers - Format of
PAST-PATH and PAST-DLY Tables

mem mem+8

. 0 .

state 0
state 1
state 2
state 3
state 4
state 5
state 6
state 7

n -1 n n+15
Current Time Interval

state 0
state 1
state 2
state 3
state 4
state 5
state 6
state 7

state 0
state 1
state 2
state 3
state 4
state 5
state 6
state 7

state 0
state 1
state 2
state 3
state 4
state 5
state 6
state 7

state 0
state 1
state 2
state 3
state 4
state 5
state 6
state 7

Both tables are set up as 128-word circular buffers. Each of them is divided into 16 macro elements
corresponding to 16 time intervals. Each macro element stores the state history of one time interval. A
pointer is set up to indicate the location of the current time interval. By stepping through each macro
element, a path can be traced backward in time.

Consider the V.32 trellis diagram again (see Figure 4). Notice that all even-numbered delay states of the
current time interval have links to the first four delay states of the previous time interval. Similarly, all
odd-numbered new delay states have links to the last four delay states. For instance, the new delay state
0 can be reached from the past delay states 0 - 3, and the new delay state 1 can be reached from the past
delay states 4 - 7. So it is relatively simple to process even- and odd-numbered states in two groups.
Furthermore, even-numbered delay states can be reached only by the first four path states, and
odd-numbered delay states can be reached only by the last four path states.

Figure 12. DIST Table Structure

state 0 state 0 state 0

DlST ACC-DIST TEMP

If the elements of the DIST table are set up as shown in Figure 12, all the path-state sequences can be
generated from the same table. Four-word circular buffers are set up, comprising upper and lower halves
of the DIST and ACC-DIST tables. By incrementing or decrementing through these circular buffers, path
and delay-state sequences can be generated for each new delay state. (See the GET-ACC-DIST routine
in the source code.) For each new delay state, only four past delay states and path states need to be accessed.
The table for past delay states (ACC-DIST) is set up as a circular buffer so that after accessing four
elements of the table, the pointer is automatically reset to the first element for the next iteration.

Once least-cost links to the eight delay states are identified and stored in appropriate tables by the
MIN-ACC-DIST routine, the accumulated distance table ACC-DIST is updated with new accumulated
distances. To avoid overflow, new accumulated distance is computed according to the following equation:

new acc dist = 0.9 X old acc dist + 0.1 X dist (4)

Note that this is a simple IIR implementation of a low-pass filter. The coefficients of Equation (4) can be
modified to control the decay time of this low-pass filter.

There are eight independent tracks whose path histories are maintained in the PAST-PTH and PAST-DLY
tables. The track that has the least accumulated cost (or distance) at this point is traced back for 16 time
periods to determine the decoder output at that time. This task is performed by the GET-PATH routine as
shown below. After 15 iterations, the delay state that corresponds to oldest link of the track is found.

RPTB
MAR
LACC
SUB
SAMM
SBRK
SBRK

TLOOP :

TLOOP-1 ;for i=O1i<=15,i++
* O+ ;offset by state for prev. time period
* 0- ;get next pointer & reset ARO to state 0
#ACCDIST ;subtract #ACCDIST to get next state
INDX ;save next state
7 ;move ARO 7 locs back to avoid skipping CBERl
1 ;now ARO is correctly positioned 1 time period

;back (circular addressing)

The format of the PAST-PTH table is identical to the PAST-DLY table except that it contains previous path
states instead of previous delay states. Also, the two tables are contiguous in data memory. Hence, by
adding 128 to the pointer of the PAST-DLY table, corresponding path states can be accessed in the
PAST-PTH table. The 3-bit path state (YO, Y 1, Y2) that corresponds to the oldest link is the output of the
decoder. Since the path-state table DIST is not in a simple order, a short table look-up routine performs the
descrambling of the output.

The 3-bit path state output by the Viterbi algorithm identifies a set of four points on the V.32 constellation.
Of these four points, the one that is closest to the actual input (at that time period) should be selected. A

table must be set up in memory that stores the decoder input for the last 16 time periods so that the oldest
input can be compared with these four constellation points. Fortunately, this cycle-consuming function can
be avoided entirely by recalling that this comparison operation was done earlier (16 time periods back, to
be exact) using the REGION table. If the pointer to the REGION table that identifies the eight closest
constellation points (for each one of the path states) is available for that time interval, it is a simple matter
to select a constellation point according to the path state number 0-7.

A 16-word circular table PATH-TBL is set up that stores pointers to the REGION table for the last 16 time
periods. Since this table is always accessed sequentially (as opposed to randomly), the bit-reversed
addressing mode is used to implement this circular buffer. The resulting 5-bit symbol (YO, Y 1, Y2,Q3, Q4)
is the actual output. Obviously, YO, the redundant bit, does not contain useful information (as it has already
served its purpose) and can be discarded now.

Finally, the differential decoding algorithm (D I P routine) converts Y1 and Y2 to Q1 and Q2. The
following equations describe this decoding process:

A table look-up approach is taken here to decrease the execution time of this routine. A 16-word table
DIFF-TBL is set up in memory. Each element of this table corresponds to a unique combination of bits
[Y 1,- 1 Y2,- 1 Y 1, Y2,], and it contains resulting decoded bits QlnQ2,. Refer to the source code listing;
see the Code Availability section on page 100. These two bits combined with 43, and 44, result in a 4-bit
output symbol (Ql, Q2,Q3,Q4).

Performance Analysis

The V.32 encoderldecoder performance is evaluated on the TMS320C5x Software Development System
(SWDS)~. The code benchmarks are also computed with the help of TMS320C5x SWDS. The transmission
channel characteristics are simulated using the MATLAB software.

The input to the V.32 encoder is a binary data stream. As previously discussed, the stream is divided into
4-bit contiguous blocks called symbols. From the encoder standpoint, the input data is random, but the
resulting 5-bit output symbols are not entirely random. Due to the convolutional encoding done on two bits
of each 4-bit input symbol, output symbols are restricted within a subset of 32 symbols, depending on past
symbol history.

The QAM modulator modifies the amplitude and the phase angle of the transmitted carrier signal according
to each 5-bit symbol it receives. The communication channel imperfections distort the transmitted signal.
White noise, impulse noise, and phase reversals are the most commonly encountered sources of channel
distortion in telephony.

2 Since the writing of this paper, the 'C5x SWDS has been replaced with the 'C5x evaluation module (EVM) for code
development.

96

The information is carried by the amplitudelphase of the transmitted carrier or, equivalently, by the I and
Q components of it.

S(t) = amplitude X cos (wt + phase)
= I X cos (wt) + Q X sin (wt)

The I and Q components of the signal received by a V.32 modem are corrupted with channel noise. If the
channel is modeled as an AWGN-type channel, it is simple to simulate its effect on the signal by adding
controlled Gaussian noise to the I and Q components independently. If N(t) is the zero-mean white noise
signal, the signal-to-noise ratio (SNR) of QAM modulated signal S(t) is given by

variance of S(t)
SNR (dB) = 10 x log,, Lvariance of N(t) I

With the assumption that the I and Q inputs are statistically independent of each other, the SNR equation
for the QAM modulated signal can be simplified as

variance of I
SNR (dB) = 10 x log,, rvariance of N , I

- variance of Q - lo log'o [variance of N* I

where Ni and Nq are additive noise signals for the I and Q input signals, respectively. Fixed-length
sequences of I and Q are generated, and their sample variances are computed using the MATLAB software.
For each desired value of SNR, required variances of Ni and Nq are calculated using Equations (9) through
(12). Once the variances of Ni and Nq are determined, zero-mean Gaussian noise sequences Ni and Nq are
generated by MATLAB. The input to the decoder program consists of I and Q data added to the respective
noise sequences, Ni and Nq. This allows measuring the SNR performance of the decoder.

Figure 13 illustrates the performance of V.32 encoderldecoder code for various SNRs. These results are
based on an input data sequence length of 4000 symbols. The yardstick for the performance measurement
is symbol error rate (SER), which is defined as:

total number of symbol errors
SER =

total number of input symbols received

Note that each input symbol consists of four bits.

Figure 13. White-Noise Impairment - Simulation Results

Symbol Error Rate (10")

SignalINoise Ratio (dB)

There are several factors that affect the performance of a Viterbi decoder in the presence of noise. One is
the length of the path history analyzed by the decoder before selecting the most likely output. In general,
it should be four or five times the encoder constraint length. Further increase in path history length gives
only marginal improvement in performance.

Another performance factor is the decay time of the low-pass filter that is used to accumulate distance. By
decreasing its time constant, the decoder can be made to respond to short noise bursts in the channel.

The table of eight accumulated distance values provides a convenient way of monitoring the performance
of the decoder (and noise activity in the channel) in the absence of any prior knowledge of incoming data.
Recall that these eight accumulated distance values allow the selection of minimum cost path at every
symbol time interval. These values are also updated as new data is processed. During the relatively
noise-free periods of transmission, it is observed that only one of the eight distance values remains
significantly smaller than the rest. This in turn forces the decoder to select one particular path at every time
interval. As the signal deteriorates, the difference between the minimum value and the rest of the table
contents decreases. At some point, all distance values become so much alike that the decoder can no longer
identify the correct path. This is the stage in which the BER increases considerably.

Table 1. Program Benchmarks

Speed And Memory Requirements

CPU Loading
per Symbol,
Excluding

Code Size Data Size Initialization
(in Words) (in Words) (in Machine Cycles)

V. 32
Encoder

V. 32
Decoder

Table 1 shows the code size, data size, and CPU loading of the V.32 encoderldecoder program. This is by
no means a fully optimized implementation of V.32 on the TMS320C5x. This code is written with the basic
aims of demonstrating the capabilities of the TMS320C5x digital signal processor family and providing
system designers with a head start on V.32 modem design. Table 2 and Table 3 present memory and speed
requirements for various modules of the encoder and decoder. There are several speed-vs.-memory issues
that can best be resolved by the system designer. The following paragraphs highlight some of them.

Table 2. V.32 Encoder Code

No Function Name Code Words Machine Cycles

1 START

2 UNPACK

3 DlFF

4 ENCODE

5 PACK

Table 3. V.32 Decoder Code

No Function Name Code Words Machine Cycles

1 RD-DATA 17 22

2 GET-RGN 108 80 - 112

3 GET-CUR-DIST 136 142

4 GET-ACC-DIST 228 489

5 MIN-ACC-DIST 36 65

6 GET-PATH 12 132

7 G ET-SY M 11 15

8 DlFF 2 1 24

The approach that should be taken wherever speed-vs.-memory tradeoffs exist is to optimize for speed. For
instance, the GET-RGN function uses a 416-word table to identify the eight closest constellation points.
As discussed in the Algorithm Implementation on the TMS320C5x section on page 88, an alternate
approach is to compute the distance between each constellation point and the current input and select the
minimum distance point.

In the GET-CUR-DIST routine, distances corresponding to eight path states are computed by inline code,
as opposed to looped code. This is done to facilitate the scrambled order of storage in the DIST table (see
Figure 12). A considerable amount of program space may be released (approximately 100 words) if looped
code is used here at the cost of additional machine cycles required to set up the loop and to access the DIST
table.

In contrast with the GET-CUR-DIST routine, the GET-ACC-DIST routine is very difficult to implement
in loop form. Each delay state computation itself makes use of iterative code. Furthermore, path-state
sequences are unique for each delay state.

Summary

The TMS320C5x provides a powerful DSP engine for data-communication applications. This application
report presents an efficient implementation of data encoding and decoding algorithms for V.32 modems
on the TMS320C5x.

The encoder and decoder source code is designed with a generic hardware interface in mind. System
designers can modify the inputloutput modules to suit their hardware requirements. The encoder algorithm
is fairly straightforward. Most of the number crunching is required by the decoder algorithm. Although the
code is written for the V.32 modem standard, a conscious effort is made to point out the V.32-specific and
general-purpose Viterbi functions for adaptation of the code to any other Viterbi decoding scheme. For the
same reason, the program flow is discussed in considerable detail.

Assembly code can be run on TMS320C5011 in real time, without requiring any external memory. On a
35-11s TMS320C5x, the entire code only takes approximately 8% of the CPU time.

Code Availability

The associated program files are available from Texas Instruments TMS320 Bulletin Board System (BBS)
at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com.

References
Michelson, A. M., and Levesque, A. H., Error-Control Techniques for Digitul Cornn~ur~ications,
John Wiley & Sons, 1985.

Clark, G. C., and Cain, J. B., Error Correction Coding for Digital Cnrnrnunicc~tions, Plenum
Press, 198 1.

Proakis, J. G., Digital Communications, McGraw-Hill Book Company, 1983.

Forney, G. D., Jr., "The Viterbi ~ l ~ o r i t h m " , Proceedings Of The IEEE, March 1973.

Viterbi, A. J., "Error Bounds for Convolutional Codes and An Asymptomatically Optimum
Decoding ~lgorithm", IEEE Transactions, Infinity Theory, April 1967.

Lin, S., and Costello, D., Error-Control Coding: Fundarnerztuls crnd Applications,
Prentice-Hall, 1983.

TMS320C5x User 5. Guide, Texas Instruments, 1993

"Report on the Work of Study Group XVII During the Period 198 1-1 984 Part 111: Proposed
New or Revised Recommendations in V-series", CCITT, Malaga-Torremolinos, 1984.

MATLAB User's Guide, The Math Works, Inc., 1989.

A TMS320C53-Based Enhanced
Forward Error-Correction Scheme

for U.S. Digital Cellular Radio

Mansoor A. Chishtie
Dighl Signal Proc;essing Applications - Semiconductor Group

Texas Instruments Incorporated

Abstract

This report presents an enhanced forward error-correction scheme that complies with the U.S. Digital
Cellular (USDC) standard. The proposed scheme uses a generalized Viterbi algorithm (GVA) based on N.
Seshadri and C-E. W. Sundberg's, "Generalized Viterbi Algorithm for Error Detection with Convolutional
Codes" [l] that produces an ordered list of N globally best estimates of the transmitted sequence. The
scheme uses the GVA to enhance performance of the USDC voice channel decoder and is implemented on
the TMS320C53 fixed-point digital signal processor (DSP). This paper shows that the 'C53
implementation of the algorithm does not require significant increase in computational overhead when
compared to a standard Viterbi algorithm.

Introduction

The second-generation U.S. cellular radio telephone system (IS-54 standard) is based on digital
technology. To increase system capacity and improve speech quality, the voice channels use digital
transmission for both forward and reverse radio links. Each radio channel is shared by at least three mobile
units through a time-division multiple access (TDMA) scheme. Elaborate forward error-correction (FEC)
techniques are employed to operate these radio links reliably under low carrier-to-interference (CD) ratio
and high data-transfer rate. The IS-54 standard combats channel noise by using systematic cyclic
redundancy check (CRC) codes, convolutional encoding, and frame interleaving techniques on transmitted
data. Although the standard does not recommend any particular decoding algorithm, the Viterbi algorithm
(VA) is most commonly used by system designers.

Various generalizations of the original Viterbi algorithm have been presented in the literature [I , 2,5,6].
These schemes provide enhanced performance over the conventional Viterbi algorithms for a number of
applications, including automatic repeat request (ARQ) schemes, concatenated codes, coded Viterbi
equalization, etc. One scheme [2] modifies the VA to deliver a reliability value for each bit in the most likely
path sequence. This algorithm is useful for Viterbi equalization on IS-54 radio channels, leading to an
improved performance of the outer VA performing the FEC. Another scheme [I] generalizes the VA to find
N globally best estimates of the transmitted sequence. It is shown here that this algorithm is particularly
appropriate for the rate- 112 framed convolutional encoder used by the IS-54 voice channel. This GVA is
implemented on the TMS320C53 fixed-point DSP.

Algorithm Description

It is well known that bit errors usually occur in bursts in Viterbi decoders. If you know the globally second
best path, the third, etc., you can use this information to reduce the burst error rate under noisy conditions.
To select N best paths simultaneously, N best survivors (out of 2N for a rate-llm code) at each state must
be retained during the forward pass through the trellis. This is referred to as parallel GVA in [I]. However,
for this application, only one path is estimated at a time. If requested, the serial GVA [l] produces the nth
best path on the basis of the previous n-l best paths.

The serial GVA algorithm, as shown in Figure 1, is selected for the voice channel FEC because it results
in reduced memory requirement and less computational overhead, as discussed in the next section.

The IS-54 voice channel uses a concatenated coding scheme in which each message frame is divided into
two bit classes: class I and 11. For the twelve perceptually most important bits of class I, a 19-bit systematic
CRC code is generated. These bits, along with the rest of the class I bits. form input to a rate-112 framed
convolutional encoder with a constraint length of 5. The class I1 bits remain uncoded.

The frame size of the encoder is 89 bits, including five tail bits. The encoder always starts and ends in state
0. The serial GVA decoder maintains a state path history as it expands the trellis in the forward pass. It also
sets up two accumulated metric tables, accuml and accum2, for the two globally best paths. Since the trellis
expands from initial state 0, the first element of the accum 1 table is initialized to 0, and the rest of the table
is set to a large positive number for a distance-type metric (or a large negative number for a correlation-type
metric). Similarly, the second table, accum2, is also initialized to a large positive number, except for the
first element, which, in this case, is initialized with a positive integer N.

Figure 1. IS-54 Voice-Channel GVA Algorithm

I
,a1 GVA

Equalized
Bit Stream

d'\

-1 Pass
CRC

Syndrome
Check

ice

Initial I = 1

Initiate
Frame
Masking

Find Ith
Best Path

The first pass of the algorithm produces the globally best estimate of the transmitted sequence. The
algorithm, in this case, is identical to a conventional VA, with one exception: it updates the state count array
as it traces the best path back in time. This state count array is used for any subsequent invocations of the
GVA. Each element hij of the state count array uniquely represents state i in time interval j and indicates
how many of the previously identified n-1 best paths pass through state i in time j. When the GVA is
invoked for the first time, the state count array is initialized to 0. During trace-back of the best path,
corresponding elements of the array are incremented by 1.

To find the second best path, the trellis is expanded again; however, this time, the second best path (out of
four possible survivors) that enters state i in time j whose hij != 0 is retained. For the states whose
corresponding hijs are 0 (that is, states that are not included in the globally best path), the best survivor is
retained. Note that, in this case, no processing is required because the state path table already contains the
history of the best path. During the trace-back phase for the second best path, elements of the state count
array that corresponds to the path are incremented by 1. This procedure is repeated for n best paths.

1=1+1

For the rate-112 voice channel coding, two survivors normally leave and enter state i at any given instant.
The better of the two paths entering state i is retained for further expansion. However, for the second best
path estimation, four links are considered. Two links each from state i and state i+16 in time j -1 enter state
i in time j. Two links are retained for further expansion. The accumulated metric tables, accuml and
accum2, represent the two survivors for state i. The difference between the initial state 0 metrics of the two
best paths (that is, accum2 - accuml = N) serves to maintain an initial offset between the two most
likely paths. This allows the two paths to possibly diverge later in time. The actual value of N is
system-dependent and can be determined experimentally.

/"
\

The knowledge of the second best path, the third, etc., is utilized by the voice channel decoder in this way:
if the CRC syndrome is nonzero for the best path, the decoder output contains errors. In this case, the second
best estimate of the transmitted data is considered. If the CRC check is successful on this estimated
sequence, then it is selected as the decoder output. Otherwise, the next best path is considered. This
procedure is repeated either until an estimated sequence with zero syndrome is found or until the L best
candidates fail. In case of failure, the current speech frame is marked bad, and a frame-masking procedure
is initiated as specified by the IS-54 standard.

Implementation Details

Programmable DSPs are widely used in digital cellular mobile unit and base station designs. The
high-performance TMS320C5x is especially designed for digital cellular applications. The newest member
of this generation, the TMS320C53, provides a low-cost, low-power DSP engine with more than 20K
words of on-chip memory. Its 35-11s fast instruction cycle time, large on-chip memory, and programmable
power-down modes make it especially suitable for hand-held telephone designs.

The GVA is implemented on a TMS320C53. The 'C53 minimax instructions facilitate a search algorithm
for trellis expansion. Its dynamic bit testing and zero-overhead loops efficiently implement a trace-back
routine.

The serial GVA algorithm is chosen for two primary reasons:

The relatively insignificant increase in computational overhead when compared to a
conventional VA
Less memory usage compared to other types of GVAs

The first pass of the GVA algorithm (that is, search for the best path) is identical to a conventional VA. The
only additional overhead is the update of the state count array during the trace-back stage. The second pass
of the GVA (if required) is more complicated. In this case, two out of four possible survivors are selected.
This normally requires a binary search of the accuml and accum2 tables (for a total of five comparisons).
However, when an ordered list of accumulated metric tables is maintained, only two comparisons are
required. Moreover, comparison is required only for the trellis points for which hij is nonzero, as previously
discussed. Table 1 summarizes the result of a TMS320C53 implementation of conventional VA and serial
GVA algorithms. Although the serial GVA takes longer to find the second best path, it is required to do so
only if the CRC syndrome fails on the best path. Therefore, the computational requirement of the serial
GVA averages out over varying channel conditions.

Table 1. Algorithm Execution Time on a 35-ns TMS320C53

Trellis Expansion 1.15 ms 1.15 ms 3.1 ms

Conventional VA

The other advantage of this algorithm is its conservative memory requirement. The two main system design
constraints of a portable dual-mode phone are small form factor and low power consumption. Both
preclude a design from having a large amount of expensive static RAMS. Since the algorithm serially finds
the globally best estimates, there is no need to save path histories of the previously found paths. Therefore,
one state path history buffer suffices for this application. Table 2 compares the memory requirement of a

Serial GVA

Best Path Second Best Path

serial GVA that finds two best paths with the memory requirement of a conventional VA. Both algorithms
are implemented on a TMS320C53 processor.

Table 2. Memory Requirement

Conventional V A ~ G V A ~

State Path History

State Count

Accumulated Metric

t Number of 16-bit words required * For best and second best paths

Results

The performance of the GVA in comparison with the conventional VA is shown in Figure 2. The modulation
scheme used is phase-shift keying (PSK). The results are measured over a simulated additive white
Gaussian noise (AWGN) channel. Figure 3 shows the path history of the voice channel encoder for a sample
input sequence. It also shows the best estimated path and the second best path traces. Note how the second
best path diverges from the best path briefly and remerges with it subsequently. If the best path diverges
only once from the actual encoder path, it is likely that the second best path will match the encoder path.

Figure 2. Simulated Bit Error Rate of Serial GVA Versus VA

10-3
-1 -0.5 0 0.5 1 1.5 2 2.5 3

Channel SNR in dB

Modulation: PS

Figure 3. State Path History Trace

encoder state path - - - - - CVA decoder best state path - - - GVA decoder second best state path

30

c -
g20
*

i?
10

n Frame size: 89 bits

" I Serial GVA: L=2

-10 1 I I I I , I I I
0 10 20 30 40 50 60 70 80 90

Bit Interval n

Conclusions

In general, modified Viterbi algorithms offer improved performance of a forward error-correction design
at the expense of more computational overhead and added complexity. This paper presents an FEC
subsystem for a USDC voice channel that uses a generalized Viterbi algorithm [I] to combat bit errors
under noisy channel conditions. It shows that the proposed FEC design performs better than a standard
Viterbi-based design. Furthermore, the FEC design does not require significant increase in memory space
and processing power. The algorithm is implemented on a digital signal processor, the TMS320C53. The
experimental results indicate that even when the proposed algorithm is restricted to two best estimates of
the transmitted sequence (that is, L = 2), its bit error rate is less than that of a standard Viterbi algorithm
operating under similar channel conditions. Further performance improvement is achievable if more than
two estimated sequences are generated.

References
1. Seshadri, N., and Sundberg, C-E. W., "Generalized Viterbi Algorithm for Error Detection With

Convolutional Codes", GLOBECOMM '89 Conference Records, pp. 43.3.1 - 43.3.4.

2. Hagenauer, J., and Hoeher, P., "A Viterbi Algorithm With Soft-Decision Outputs and Its
Applications", GLOBECOMM '89 Conference Records, pp. 47.1.1 - 47.1.7.

3. Cellular System: Dual-Mode Mobile Station - Base Station Compatibility Standard, IS-54
Project Number 2215, Electronic Industries Association, December 1989.

4. TMS320C5x User S Guide, Texas Instruments, 1993.

5. Hashimoto, T., "A List-Type Reduced-Constraint Generalization of the Viterbi Algorithm",
IEEE Transactions on Infinit, Theoiy, Volume IT-33, November 1987, pp. 866-876.

6. Schaub, T., and Modestino, J.W., "An Erasure Declaring Viterbi Decoder and its Applications
to Concatenated Coding Systems", ICC '86, 1986, pp. 1612-1616.

Part V
Baseband Modulation and Demodulation

IS-54 Digital Cellular Modem
Implementation on the TMS320C5x

Balaji Srinivasan
Digital Signal Processing Applications - Semiconductor Group

Texas Instruments Incorporated

Introduction
Digital cellular and digital mobile radio communication are today's key topics in the communications field.
Digital mobile cellular communication systems are being introduced in the U.S., Canada, Europe, Japan,
and many other countries. Various standards like the U.S. Digital Cellular (USDC), Global System for
Mobile Communications (GSM), and Personal Digital Cellular (PDC) have been proposed in different
countries for the development of a mobile cellular communication system. The U.S. Digital Cellular
standard is specified by the Telecommunications Industry Association (TIA). The TIA has specified
n/4-DQPSK as the new modulation standard for the emerging U.S. digital cellularcommunication systems.
The focus of this report is on the theory and implementation of the nl4-DQPSK modem on the TMS320C5x
DSP. The TMS320 family of DSPs is well suited for such modem applications. The advanced features of
the 'C5x have made the high-data-rate modem implementation possible. This report is organized into the
following topics.

Description of n/4-QPSK modulation scheme
Theory of the n/4-DQPSK modem
Modem implementation on the TMS320C5x
Performance results
Summary

The key features of the TMS320C5x that provide excellent code efficiency and ease of implementation are
discussed in the Modem Implementation on the TMS320C5x section on page 119.

Description of d4-QPSK Modulation Scheme
A study of various modulation schemes like QPSK, OQPSK, GMSK, and TFM have been made, and
attention has been focused on the use of linear modulation techniques for nonlinearly amplified systems
to meet both the power and spectral efficiency requirements of mobile cellular systems. There has been a
search for alternative unstaggered linear modulation systems that have low envelope fluctuation. After a
thorough analysis, 1114-QPSK was proposed as the standard modulation technique to be used in the digital
cellular environment. nI4-QPSK is an unstaggered modified version of QPSK with two sets of
constellations totaling eight constellation points. This modification to QPSK has carrier phase transitions
that are restricted to t x/4 and f 3x14. Since the phase does not undergo instantaneous t n transitions as
in QPSK, the envelope fluctuation at the output is significantly reduced. Also, as this is not a
staggeredloffset scheme, coherent as well as noncoherent detection can be applied to n/4-QPSK. It has been
shown that the spectral efficiency obtained is twice that obtained by two-level digital FM, GMSK, or TFM,
which are constant envelope modulation techniques.

The ~14-shifted-QPSK signal constellation can be viewed as the superposition of two QPSK signal
constellations offset by 45" relative to each other, resulting in eight signal phases. Symbol phases are
alternately selected from one of the two QPSK constellations, and as a result, successive symbols have a
relative phase difference that is one of the four angles, - t d 4 and 2 3 ~ 1 4 . Figure 1 illustrates the
n/4-shifted-QPSK signal constellation and the various possible phase transitions. As Figure 1 shows, two
constellation sets, one with four possible phases (0, n12, n, and h / 2) and the other with another four
possible phases (n/4,3~/4, -3n14, and h14) are used in the actual modulation. There is a relative n14 shift
between the two constellation sets; hence, the name ~14-shifted QPSK.

First, the input data is buffered into one of the four possible dibit symbols (namely, 00,Ol. 10, or 11). Then.
for odd numbered symbols, the output signal phase is chosen from one of four possible phases of the
constellation set $; for even numbered symbols, the output signal phase is chosen from one of four possible
phases of the constellation set 8. The choice of the particular phase within a constellation set depends on
the dibit input. As usual, to reduce dibit errors in the receiver, Gray coding of dibits is done prior to phase
selection from a chosen constellation set. This alternate selection of a constellation set can be reversed for
odd and even numbered symbols. In conventional QPSK, only one of the constellation sets is chosen. Due
to the change of constellation sets in xl4-shifted QPSK, eight signal constellation points are possible.
Although eight constellation points are seen in the constellation diagram and they look like the 8-PSK
signal constellation, the choice of signal phases for every symbol is only four; hence, it is still a 4-phase
QPSK. In conventional QPSK, the possible phase transitions were 0, f ~ 1 2 , and x. Here, the possible phase
transitions are only f 7c14 and f 3x14, thereby reducing the envelope fluctuations of the modulated output
signal. Envelope fluctuations are very important since demodulation becomes difficult when the signal is
amplified by nonlinear amplifiers (which are common in cellular systems). An OQPSK (offset QPSK)
scheme reduces the fluctuations but restricts the type of demodulation scheme to be coherent. Noncoherent
demodulation has certain advantages in the cellular systems, and x14-shifted QPSK allows the flexibility
to use either coherent or noncoherent demodulation. If differential encoding is also performed prior to
signal mapping, the scheme becomes x14 DQPSK.

Figure 1. d4-Shifted QPSK Signal Constellation

Q rail

Theory of the d4-DQPSK Modem

Basic Modem Specifications

The specifications for the U.S. digital cellular modem were set by the TIA. A few of the specifications that
are relevant to this application are:

Mode of operation
- 30-kHz channel structure, each channel operating on TDMA burst mode
- Gross bit rate of 48.6 kbps
Modulation
- ~114-shifted differentially encoded quadrature phase shift keying
- Gray coding used in signal mapping to reduce dibit errors
- Spectral shaping to limit adjacent channel interference
- No specific implementation method
Baseband filtering
- Square-root raised-cosine pulse-shape frequency response
- Linear phase response
- Roll-off factor for square-root pulse shaping filter to be 0.35
- No specific implementation method
Demodulation
- Any coherent or noncoherent demodulation method
- No carrier-related specifications (TMS320C5x implementation is a baseband modulation

and demodulation)

Modulator

The theory behind signal mapping and baseband filtering for modulation is reproduced from the TIA
document [7] here. The block diagram of the ~14-shifted DQPSK modulator is shown in Figure 2. The input
48.6-kbps data stream is converted into symbols as dibits Ak (odd bit) and Bk (even bit). Then the
information is differentially encoded (symbols are transmitted as changes in phase between two successive
symbols rather than as absolute phases) and mapped into one of the signal phases from either of the two
signal constellations described in the Description of W4-QPSK Modulation Scheme section on page 113.
The symbols can be first differentially encoded and then mapped into a signal phase as a two-step process,
or they can be combined into a single step with a set of equations. The digital data sequences Ak and Bk
are encoded as Ik and Qk according to the following set of equations.

Ik-l and Qk-l are the previous symbol's I and Q values. A$(Ak, Bk) is the phase change in the kth symbol
interval and is determined according to Table 1. The phase change values are Gray coded.

Table 1. Phase Calculation

Simple trigonometric manipulation easily shows that Equations (1) and (2) are derived from

where Qk and $k-l are the absolute phase angles corresponding to the kth and (k-1)th symbol intervals,
respectively.

The signals Ik, Qk at the output of the differential phase encoding block can take one of the five values 0,

2 1, or * 4, as seen from the constellation of Figure 1. Impulses Ik, Qkare applied to the I and Q baseband
42

pulse-shaping filters. The baseband filters have linear phase and square-root raised-cosine frequency
response of the form:

where T is the symbol period. The roll-off factor, a, determines the width of the transition band and is 0.35
as per the specifications.

Figure 2. Modulator Block Diagram

The baseband-filtered I and Q signals are then multiplied by the camer and transmitted over the channel.
The implementation on the TMS320C5x is a baseband modem, hence; the carrier is not included as part
of the modulator block diagram.

Demodulator
Digital communication systems that operate in power- and bandwidth-limited channels generally employ
coherent detection that involves carrier-recovery technique. In a Rayleigh-faded mobile channel with

Differential
Encoding

and
Signal

Mapping

-

I Output - lk
----D

Ak

B~

48.6 kbps
b

IIP Data

I-Arm
Pulse-Shaping

Filter

Serial
Parallel

Converter

Q Output 2 Q-Arm
Pulse-Shaping

Filter

AWGN, coherent systems have a significant advantage in power efficiency and performance over the
noncoherent demodulation involving differential or delay detection techniques. But in a mobile
environment, disturbances such as multipath fading, Doppler frequency shifts, and phase noise are present.
Coherent detection, which is based on the carrier frequency and phase lock, may suffer disadvantages over
the noncoherent detection, though coherent detection has 3-dB power efficiency. Additionally, the
noncoherent detection makes the receiver design simpler.

Since the current implementation on the 'C5x is a baseband modem that does not involve the carrier, and
since noncoherent demodulation offers significent advantages, baseband differential detection has been
chosen as the implementation technique on the 'C5x. Note that the TIA has not recommended any specific
demodulation method.

Figure 3. Demodulator Block Diagram

I Matched I
! a u - I Filter I .

Differential
Detection

Q Matched

Zt
Filter

Recovered
Recovery

Symbol
Timing

The block diagram of the demodulator is shown in Figure 3. The theory of baseband differential detection
[5] is discussed in the following sections.

Since no carrier multiplication is performed in this 'C5x implementation, the signals wt and zt are directly
available at the demodulator without any cosine/sine multiplication. At this time, wt and zt are sampled,
and the filtering, differential detection, data recovery, and symbol timing operations are performed. In this
implementation, the samples wk and zk are made directly available to the demodulator in order to test the
modem in the loop-back mode.

Filtering
The samples of wt and zt are passed through the matched filters in the receiver. Since the baseband I and
Q signals at the transmitter are filtered by square-root raised-cosine pulse-shaping filters, the matched
filters at the front end of the receiver are designed to give the same frequency response so that the combined
receiverltransmitter response becomes raised cosine.

Differential Detection
Differential detection (delay and multiply) is performed with the filtered samples wk and zk according to
the following equations.

wk = cos(qk - 0) and zk = sin(qk f 0)
(6)

where qk is the phase of the carrier at the sampling instant and 0 is an arbitrary phase shift that is canceled
in the differential operation.

After the detection operation:

where wk-1 and zk-1 are the one-symbol. time-delayed values of wk and zk, respectively.

Data Recovery

Equations (7) and (8) retrieve the phase change between two successive symbol intervals. Using Table 1
and the values of xk and yk, it is simple to decode the dibit information transmitted according to the
following hard decision rule.

Symbol Timing
Symbol timing is one of the most important aspects of the demodulator because the hard-decision decoding
has to be performed for data recovery in the appropriate sample so that, in the presence of noise, the
recovered iniormation is without error. In a TDMA environment where fast synchronization is required,
differential detection is more advantageous, as it does not depend on the carrier recovery and phase lock
in the beginning. The theory of symbol timing is based on a simple squaringlenergy comparison technique
[6] . Assuming four samples per symbol, the energy is calculated at every sample as

e = xk2+ y12
(11)

In the beginning of timing acquisition, an assumed mid-baud sample (say sample 3) is used for data
recovery. Sample 2 and sample 3 energies are designated as ep and en, respectively. At the assumed sample
3, the value of en - ep is calculated. The cymbol timing is varied according to the following algorithm.

Let thresh = a threshold value ; counter = a count value

begin:

If I e n - ep i > thresh then goto ' correct '

else goto ' done '
correct: If en- ep > 0 then goto ' checkm '

else goto ' checkl '
checkm: countl = 0

If countm - counter = 0 then goto ' advance '
else

{ countm = countm + 1
goto ' done ' }

checkl: countm = 0

If countl - counter = 0 then goto ' retard '

else
{ countl = countl + 1
goto ' done ' }

advance: " Process to advance the timing by one sample "
goto ' done '

retard: " Process to retard the timing by one sample "
done :

In this algorithm, the values of counter and threshold are initialized in the beginning to estimated values
by trial and error. The value of counter can be kept small in the beginning of timing acquisition and later
changed to a larger value so that the timing lock is maintained. This method is more stable with phase errors
and small frequency shifts, as it does not depend on carrier recovery.

Modem Implementation on the TMS320CSx

lnterrupt Organization

The data rate for the modem is 48.6 kbps, per the TIA specifications. The symbol rate for QPSK, then, is
24.3 kbaudls, as every symbol comprises two bits. The number of sampleshaud chosen is four, both for
the modulator and demodulator. This means the baseband filters at the modulator need to generate at least
four filtered sampleshaud; hence, the minimum sampling frequency that is required is 97.2 kHz. The time
available to complete the entire modem operation is quite critical, due to this high sampling frequency. For
real-time operation, interrupts are generated at this rate. The consecutive interrupt routines are organized
in a particular way for ease of implementation and code efficiency. Figure 4 details the operations
performed in the consecutive interrupts.

Figure 4. lnterrupt Organization

I Wait for lnterrupt I
+

Modulator
Access new I, Q values based on dibit data processed

Run mod filter and output filtered I and Q values
Update mod look-up table address

Demodulator
Read demod I, Q inputs

Run demod filter
Do differential detection
Run symbol timing loop

Output second bit of the recovered data

Wait for lnterrupt I
Modulator

Get new dibit data
Run mod filter and output filtered I, Q values

Demodulator
Read demod I, Q inputs

Run demod filter
Do differential detection
Run symbol timing loop

Modulator
Process dibit data

Run mod filter and output filtered I, Q values
Demodulator

Read demod I, Q inputs
Run demod filter

Do differential detection
Perform actual symbol timing

Recover dibit data and output the first bit
Load information for symbol timing

Wait for lnterrupt

I Modulator
Run mod filter and output filtered I, Q values I

Demodulator
Read demod I, Q inputs

Run demod filter
Do differential detection
Run symbol timing loop

Modulator Implementation

Pulse-Shaping Filter

The pulse-shaping filters are designed using a commercial filter design package [9]. A 20-tap
pulse-shaping FIR filter with a roll-off factor of 0.35 is designed, and the coefficients are stored in the
program memory. The same set of coefficients are used for both I and Q filtering. The I and Q values (the
filter inputs) do not change over a complete symbol period. This means once the modulator look-up table
is read in the first interrupt, these values remain unchanged for the next three interrupts. Therefore, the
interpolation technique is employed in filtering. An interpolation factor of 4 is achieved. Thus, the number
of coefficients used in multiplication is reduced to 2014 = 5. The number of filter delays used is also 5. This
interpolation technique saves three-fourths of the time required to run the normal filter. The delays are
updated once in four interrupts; specifically, in the interrupt just before the table look-up is done. The five
I delays are immediately followed by five Q delays in the internal dual-access random-access memory
(DARAM). The MADS instruction is used in the first three interrupts for multiply and accumulate. The
MADD instruction is used in the fourth interrupt because the delays are also updated so that the new I and
Q values can be loaded. The BMAR register is loaded with the appropriate address before the modulator
filter is called in the main routine. Since it is an interpolation filter, the filter coefficients are rearranged in
different blocks of five consecutive locations in program memory, so that the appropriate set of coefficients
is used by filters in the four consecutive interrupts.

The modulator filter is implemented using one of the circular buffers in the 'C5x. The circular buffer is
initialized in the beginning of the program as a decrement-type buffer. The circular buffer I and Q delays
with the auxiliary register pointer (ARP) are as shown below.

Qk + Circular buffer end low address

Qk-1

Qk-2

Qk-3
Auxiliary Q k 4

register + a Ik

pointer Ik-l

Ik-2

Ik-3

Ik-4 + Circular buffer start high address

The filter code is of the general format

rptz #coefnum

madslmadd *-
apac

sach

The preceding filter code does not involve overhead such as loading scaled filter inputs, loading the filter
pointer with the appropriate address, etc. Both I and Q filtering are performed using a single circular buffer
with contiguous filter delay locations.

The modulator circular buffer pointer points to location Ik at the start of the first interrupt. As shown in the
modulator code, the new value of Ik is accessed from the look-up table and loaded, then decremented in
such a way that it points to the Qk location. The new Qk value is then loaded and the pointer is modified
so that it is reset to the start address. The BMAR register is loaded with the appropriate address so that the
filter operates on the appropriate coefficients. The BMAR register allows the dynamic addressing for the
filter instructions MADS and MADD. There is no data move involved in the filter for the first three
interrupts. In the last interrupt, MADD is used so that a data delay creates the space for the next I and Q
values.

Differential Encoding and Signal Mapping

As discussed in the Modulator subsection on page 115, Equations (1) and (2) implement differential
encoding and signal mapping as a direct one-step process. Those equations can be further reduced and
tabulated as shown in Table 2.

Table 2. Reduced quat ti on st

Ak Bk lk Qk

0 0 sincos x (lk-1 - Qk-l) sincos x (Ik-1 + Qk-1)

0 1 -sincos x (Ik-1 + Qk-l) sincos x (Ik-1 - Qk-1)

1 0 sincos x (Ik-1 + Qk-l) -sincos x (lk-1 - Qk-1)

1 1 -sincos x (Ikw1 - Qk-1) -sincos x (lk-1 + Qk-1)

1 f sincos = -= = 0.707
42

The following tables for odd and even symbols are generated from the equations in Table 2 and the naming
pattern of the constellation in Figure 1. The values inside the parentheses (within the table entry) are the
corresponding(Ik, Qk) values. Thecolumn headings of the table represent Ak, Bk and theconstellation point
per the constellation of Figure 1.

Table 3. Odd-Symbol Look-Up

Table 4. Even-Symbol Look-Up

Ak Bk even0 (0) even1 (1) even2 (2) even3 (3)

0 0 (0, l) (-1 ,O) (0, -1 1 (190)

Modulator Look-Up Table

The constellation points are named 0, 1,2, and 3, whether for an odd symbol or an even symbol. The odd
symbols and even symbols are designated as symO and syml, respectively, and pcn stands for previous
constellation. For example, pcnOsymO means that the previous constellation was numbered 0 and the
present symbol is odd. The organization of the table is as follows.

Table 5. Modulator Look-Up

Address Naming Description Table Entry

Lookup Table Main Base Address

Setl's Base Address: pcnOsymO AkOBkO Ik value

Qk value

Next ~ddress t

Akl Bkl - do -

t ~ h i s value is the next set's base address for the new symbol, and it is calculated relative to the look-up table's
main base address.

There are eight sets of table entries as shown above (pcnOsyml, pcnlsym0, etc.) with each set having
entries for AkOBkO, AkOBkl, AklBkO, and AklBkl, and each AkBk having three entries, totaling 96 entries.

Updating the Look-Up Table

An ARP pointer (for example, ar4) is used to point to the look-up table address. The following code excerpt
gets new values for Ik and Qk from the modulator look-up table and updates the table address pointer.

Modulator Table Manipulation Code

Interrupt

1st: lmmr bmar , #bmar 1 ; bmar reg = base address of 1st set
; interpolation coeffts in prog mem

lacc
sach

lacc

sbrk

calld

sach

z aP
mar

lar

lacl

sacl

lac 1

sacl

lmmr

calld

zap

noP

#coef num I

I

Mod-fltr, *, ar2 ;

data

*+
datal

bmar, #bmar2

Mod-fltr, *,

lacl scrdata

noP
XC 1, gt

adrk #6

load ik value
store in filter's ik input location,

load qk value

sub coef. no (19) to point the qk
filter input location

call delayed filter

store acc in filter's qk i/p location

clear acc. & p reg.

after filtering, arp=ar4

ar4=next set's base address

load 1st bit of dibit data

store in var "data"

load 2nd bit of dibit data

store in var "datal"

bmar=interpolation coeff. address

call delayed filter

clear acc. & p reg.

nop to fill up delayed call

; load 1st scrambled bit

; no operation

; if that bit is a 1 execute foll ins'n

; add 6 to lookup table pointer

lmmr bmar , #bmar 3 ; bmar=interpolation coeff. address

calld Mod-fltr, *, ar2 ; call delayed filter

dmov data1 ; move data1 into data

zap ; clear acc. & p reg.

lac1 scrdata ; load 2nd scrambled bit

noP ; no operation

xc 11 gt ; if that bit is a 1 execute foll ins'n

adrk #3 ; add 3 to lookup table pointer

lmmr bmar , #bmar4 ; bmar=interpolation coeff. address

calld Mod-fltr, *, ar2 ; call delayed filter

z aP ; clear acc. & p reg.

noP ; nop to fill up delayed call

In the first interrupt, after the I and Q values are accessed and loaded into the appropriate filter input
locations, the filter is executed. The pointer ar4 now points to the location where the next set's base address
is available, and this address value is loaded into ar4. In the second interrupt, the new dibit data is read. In
the third interrupt, ar4 is incremented by 6 if the first bit of the dibit data is a 1; otherwise it is unchanged.
In the last interrupt, ar4 is incremented by 3 if the second bit of the dibit data is a 1 ; otherwise it is unchanged.
This way, ar4 is modified so that it points to the appropriate subset base address in the set chosen in the first
interrupt.

The differential encoding and signal mapping only takes three cycles (max) for the ARP modification in
any interrupt. The modulator code is found to be highly efficient with this implementation. This is made
possible with the powerful features of the 'C5x. The circular buffer feature enables absolute zero-overhead
filtering. Dynamic addressing with MADS and MADD makes interpolation filtering easier. Single-cycle
decision-making instructions like XC make look-up table pointer modification simpler. The instructions
for delayed call, return and branching, and special instructions like ZAP and RPTZ reduce the various
branch overheads.

Demodulator Implementation

The demodulator performs I and Q matched filtering, differential detection, data recovery, and symbol
timing. Unlike the modulator, the operations performed by the demodulator in four interrupts are the same
except for the symbol timing loop.

Input Filtering

The input I and Q matched filters have square-root raised-cosine frequency response. They are 20-tap FIR
pulse-shaping filters similar to the modulator. But these filters cannot be implemented as interpolation
filters because the sampled I and Q values are always different. Again, four sampleslbaud are chosen for
the demodulator implementation. The I and Q filters are implemented using the second circular buffer,
similar to the modulator I and Q circular buffer. The only difference is that MACD is used instead of MADD
or MADS because the inputs are updated with every interrupt.

Differential Detection

Every time the demodulator filter is executed, the filtered Ik sample is made available in the accumulator
buffer ACCB, and the filtered Qk sample is made available in the accumulator. This format is used for
code-efficient differential detection. The accumulator buffer feature of the 'C5x is very useful as an
accumulator backup, and data transfer between the accumulator and its buffer enhances its usage.
Differential detection and energy calculation are performed by the following short code excerpt.

sach zkl, 2 ; immly after i/p filtering,
; store acc. in wkl

lacb ; load acc. with acc. buffer

sach wkl, 2 ; store it in wkl

It wkl ; t reg = wkl

mPY wkpl

ltp zkl

; P reg = wkl.wkl-1

; t reg = zkl, acc = wkl .wkl-l

mpy zkpl ; P reg = zk1 ezkl-1

mPY a wkp 1

sach xk

ltp wkl

mPY zkpl

sqrs xk

sach yk

; P reg = Zkl-Wkl-1

; acc = wkl.wkl-1 + zk1 .zk1-1
; store acc. in xk

; t reg = wkl, acc = zkl .wkl-l

; P reg = wkl. zkl-I

; p reg = xk2,

; acc = zkl.wkl-1 - wkl. zkl-1
; store acc. in yk

lacc #zero ; clear acc.

sqra yk ; P reg = ykZ

apac ; acc = xk2 + yk2
sach energy

lacc addr

calad

dmov wkl

dmov zkl

; store acc. in energy

; load symbol timing address

; call delayed with address in acc.

; move wkl into wkl-1

; move zkl into zkl-1

Notice from Equations (7) and (8) that every new filtered sample wk and zk is multiplied by wk-1 and zk-1,
which are one symbol (that is, four samples) delayed. The segregation of interrupts facilitates efficient
implementation. There are four sets of wk, wk-1 and zk, zk-1 used for four interrupts. As far as the first
interrupt is concerned, wkl and zkl are the current filtered I and Q values and wkpl and zkpl are the
one-symbol delayed values. Similarly, wkp2 and zkp2 are the one-symbol delayed values for the second
interrupt, and so on. Hence, after performing the differential detection and energy calculation, two DMOV
instructions move wkl and zkl into wkpl and zkpl to be used next time in that particular interrupt. The wkp
and zkp values are allocated proper memory locations to perform this. Once differential detection is done,
the symbol timing loop is called using CALAD, accommodating the two DMOV cycles. The main
differential detection and energy calculation takes just 17 cycles.

Symbol Timing
Symbol timing is performed using a program address jump with instruction CALA. The organization of
the symbol timing loop is as follows. The variable Addr is initialized to Samplel at the beginning of the
program.

Samplel : Output the second bit of the recovered dibit
information ;
Addr = Sample2 ;

Sample2 : energyqrev = energy ;
Addr = Sample3 ;

Sample3 : energy-next = energy ;
Recover dibit data and output first bit of the
dibit information
Run symbol timing algorithm
If no correction : Addr = Sample4
If advance correction : Addr = Samplel
If retard correction : Addr = Sampld

Sample4 : Addr = Samplel

Sampld : Addr = Sample4

As seen, if the timing is to be advanced, one sample is skipped. If the timing is to be delayed, one extra
dummy sample address jump is inserted.

Performance Results

The performance of the modem implemented on the 'C5x under the AWGN environment is summarized
here.

Theory
The theory of noise generation and addition is as follows. Note that VAR() and Std ()represent the variance
and the standard deviation functions.

Signal power) - (var(signal))
S N R ~ = l o loglo (Noise Power - 10loglO Vadnoise)

For I & Q arms:

Var(I signal) [Std(l signal)12
Var-i = - -

~ o (s N ~ ~ B / lo)

Var(Q signal) [Std(Q signal)12
Var-q = - - [-.. 1 10) lo(s~.. 110)

Also

Two independent Gaussian-distributed random-noise sequences, I-noise[k] and Q-noise[k], are generated
using the Matlab software. The noise is added to the I and Q signals as shown below.

Id and Qd are the two new demodulator input points that are generated using Matlab.

Testing

The modem implementation is tested using a file VO scheme in which the modem runs on a 'C5x EVM
card and communicates with the host PC for a nonreal-time file transfer. The testing is performed with the
setup shown in Figure 5.

Figure 5. Modem Test Configuration

Noise Generation
by Matlab

As shown in Figure 5, the assumed input data pattern is scrambled in the 'C5x to generate randomness in
the input data. About 60,000 samples each of I and Q are generated by the modulator and stored in files.
The 'C5x EVM talks to the PC through DSP-PC interface software for file transfer. The I and Q noise files
are generated by Matlab and added with modulator output files. The demodulation and descrambling is
done, and recovered data of 30,000 bits is stored in a file. The number of errors in the demodulator output
file are counted in trials with various SNR values. The modem performance for the AWGN channel is
shown in Figure 6.

Output Data File

Q Noise
File

Assumed 24-Bit
1/P Data Pattern

Q I/P File

Descrambler
Implemented

on 'C5x

Stored in
'C5x Single-Access

RAM (SARAM)

A Standard
Scrambler

+ Demodulator
4 - Demodulator

l Noise
File

Implemented
on 'C5x

4 Modulator

Q OIP File

Figure 6. BER Versus SNR for a Static AWGN Channel

0.0001
BER

SNR (dB)

Performance

As seen in Figure 6, the performance in an AWGN environment closely follows the theoretical
performance. Since this is a cellular modem, its performance also needs to be tested under fading conditions
with Doppler shifts due to vehicle speed. The performance of this modem under such conditions is expected
to be of moderate standards because the implementation involves restrictions such as fewer sampleslbaud,
etc. The performance could be improved by employing more sampleshaud, a sophisticated symbol timing
scheme, an automatic AGC, and an equalizer at the front end of the demodulator. As the number of cycles
taken by the entire modem function is about 160, other extra features listed above could be accommodated
to improve the performance under fading and Doppler-shift conditions.

Speed and Memory Requirements

Table 6 lists the number of 'C5x program and data memory words required by the core
modulator/demodulator algorithm. It also provides the maximum number of cycles needed to run the
modulator and demodulator. The hardware, VO interface, and program initialization requirements are not
included here, as they do not fall within the time-critical loop of the modem implementation. Note that this
table does not include the interrupt handling overheads.

Table 6. Program Memory and Speed Requirements

Module Name Program Memory Data Memory Cycles (Max)

Modulator 76 + 116t 11 4 32

Demodulator 246 + 20t 68 126

t This is the size of program memory used for loading tables, etc.

The maximum number of words and cycles used by the various modules of the modulator and demodulator,
including the different overheads, are shown in the following tables.

Table 7. Modulator Code Size and Execution Time

Module Name Size in Words Cycles (Max)

Mod-Main 55 + 96t 13

Mod-Fltr 21 + 20t 19

t This is the size of program memory used for loading tables, etC.

Table 8. Demodulator Code Size and Execution Time

Module Name Size in Words Cycles (Max)

Dmd-Fltr 11 + 20t 52

t This is the size of program memory used for loading tables, etc.

As the above tables show, both the modulator and demodulator have been well optimized to accommodate
future addition of modules, if necessary, for performance improvements. There is also a large portion of
unused internal RAM for future memory requirements.

Summary

The IS-54 U.S. digital cellular modem concepts are introduced and the theory of n/4-QPSK with signal
constellation is discussed. The modem implementation on the TMS320C5x is explained and the
performance of the modem with AWGN is summarized. Also, the requirements of the modem regarding
speed and memory are tabulated. The efficiency and capabilities of the TMS320C5x for the high-bit-rate
cellular modem application are clearly visible from the modem implementation. This implementation
needs to be further studied under Rayleigh fading with co-channel interference and Doppler shift.
Improvements for the demodulator are suggested. The modem program is made highly modular and is
developed according to the TI Communication Software Library (CSP) developer's guidelinesl. This
7c/4-QPSK cellular modem implementation on the TMS320C5x family of DSPs provides guidelines for
cellular-systems designers to employ in using the 'C5x DSP for all cellular and related applications.

Code Availability

The associated program files are available from Texas Instruments TMS320 Bulletin Board System (BBS)
at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com.

1 Refer to "Software Coding Guidelines for 'C5x Developers", p. 247 of this book.

References
1. Lee, W. C.Y., Mobile Cellular Telecommunications Systems, McGraw-Hill, 1989.

2. Proakis, J.G., Digital Communications, McGraw-Hill, 1989.

3. Crochiere, R.E., and Rabiner, L.R., Multirate Digital Signal Processing, Prentice-Hall, Inc.,
1983.

4. Chennakeshu, Sandeep, and Saulnier, Gray J., "Differential Detection of nl4-Shifted-DQPSK
for Digital Cellular Radio", IEEE Transactions on Vehicular Technology, Vol. 42., No. 1,
February 1993.

5. Feher, Kamilo, "MODEMS for Emerging Digital Cellular-Mobile Radio System", IEEE
Transactions on Vehicular Technology, Vol. 40, No. 2, May 1991.

6. Troullinos, George, et al., "Theory and Implementation of a Splitband Modem Using the
TMS32010", Digiral Signal Processing Applications with the TMS320 Family, Vol. 2,
Prentice-Hall, Inc, 199 1.

7. Cellular System: Dual-Mode Mobile Station - Base Station Comnpatibilit?, Standard, IS-54
Project Number 2215, Electronic Industries Association, December 1989.

8. TMS320C5.x User 's Guide, Texas Instruments, 1990.

9. DFDP3/Plus Digital FilterDesign Package Release 1.00, Atlanta Signal Processors, Inc., 1992.

10. MATLAB User's Guide, The Math Works, Inc., 1989.

11. Chishtie, Mansoor A., "Software Coding Guidelines for 'C5x Developers",
Telecomm~inications Applications With the TMS320C5x DSPs Application Book, Texas
Instruments, 1994, pp. 247-258.

A DSP GMSK Modem for Mobitex
and Other Wireless Infrastructures

Etienne J. Resweber
Synetcom Digital Incorporated

Abstract

Mobitex is a packetized wireless 900-MHz wide area network (WAN) that allows mobilelportable
subscribers to transfer data, including e-mail, through the growing national and international network
infrastructure. The network operates with an 8-kbps data rate using GMSK.3 modulation. User terminals
are typically sophisticated portable or mobile devices that encompass one or more applications and all
additional OSI protocol layers necessary to send and receive data on the network. Within the user terminal,
the interface between the radio (physical layer) and other layers is a high-performance Gaussian minimum
shift-keying (GMSK) modem. During transmission, the modem converts packets of network data into
transmit baseband. For receiving, it demodulates similar waveforms into data decisions. The typical
Mobitex modem produces at least part of the physical-layer processing necessary for radio interface.

The cellular industry solution for packetized data is called cellular digital packet data (CDPD). The modem
waveforms used for Mobitex are similar (GMSK), though CDPD uses 19.2 kbps. Core GMSK concepts,
however, still apply; therefore, the modem design described herein can also be used as a basis for CDPD
modem development in the future.

Synetcom Digital Incorporated has developed a DSP-based Mobitex modem that accomplishes the radio
interface. Transmit data in packet form is level shifted and Gaussian filtered digitally within the modem
algorithm so that it is ready for transmitter baseband interface, either via D/A converter or by direct digital
modulation. Receive data at either baseband or intermediate frequency (IF) from the radio receiver is
digitized and processed by the modem-nearly optimally-into data decisions. Packet synchronization
is also handled by the modem, assuring that the next layer sees only valid Mobitex packets. Received signal
degradation from frequency offsets, multipath (Rayleigh) fading, and other effects is anticipated and
addressed in the modem design.

Introduction

About Mobitex

Mobitex is a packetized narrow-band data service operating near 900 MHz (450 MHz in the United
Kingdom), originally conceived by Swedish Telecom and further developed by Eritel, a joint venture of
Swedish Telecom and Ericsson. The service is being offered in the United States by RAM Mobile
DataIBell South. Base stations, which typically cover 5-15 mile radii, are arranged in a cellular-like
fashion. Network roll-out has proceeded to the extent that coverage within the top 200 U.S. metropolitan
areas is advertised. At Synetcom Digital Incorporated's Redondo Beach, California office, five base
stations are audible on an indoor cellular whip, four of which have usable signals.

Other Networks

Mobitex falls into the class of wireless WANs. There is at least one other operational infrastructure, called
Ardis (IBMIMotorola), and several more are anticipated, including CDPD from McCaw Cellular and its
partners.

Mobitex Terminal Hardware Architecture
Figure 1 shows a typical terminal architecture. Controller CPU functions typically handle higher OSI
layers, which form packets, provide error coding and scrambling, handle acknowledgments, and control
transmitter and receiver operation.

Figure 1. Typical Mobitex Terminal Architecture

GMSK Modem -
GMSK BB

Audio In
Application buri1ru11er

RX IF Out

Baseband Out

RX Baseband I

WAN Modems and the Radio Channel
WAN modems are designed to operate with signal distortions produced by multipath frequency offsets and
nonideal radio IF filters. Multipath distortion occurs when a signal reflection causes propagation along
several paths across the link. Different path lengths and reflections produce signal components with
unequal amplitude and delay, which vector sum at the receiver. For fixed links, the vector sum looks like
a superposition of comb filters in the frequency domain. In the time domain with long delays, symbol
energy is smeared; this smearing is known as intersymbol interference (ISI). A null (cancellation) or
significant slope at or near the carrier frequency causes severe distortion to the received signal, which can
degrade bit error rate (BER) performance.

The actuai multipath parameters vary spatially for mobile links. The receiver sees time-varying comb
functions with nulls that traverse the spectrum and momentarily align with the signal frequency, causing
deep fades. Under these conditions, the received carrier-envelope amplitude has been shown theoretically
and experimentally to conform to a Rayleigh distribution. Based on this model, it has been shown that
99.9% of fluctuation occurs within a dynamic range of 40 dB [I].

Typical radio systems allow for some frequency error (tight frequency tolerance is expensive), which may
degrade modem receive performance. Receiver IF and baseband filtering is also never ideal and can
introduce additional waveform distortion from ISI.

The Mobitex modem design described herein anticipates these and other distortions and has been shown
to operate satisfactorily in laboratory simulations of the degradations. Mobile field tests are anticipated to
further qualify modem performance.

Advantages of DSP Modems
Modem DSP code is written to closely approximate the ideal modem architecture- typically, more closely
than an analog implementation approximates it - potentially realizing outstanding modem performance
that is repeatable over time and temperature. The approach is flexible because all modem parameters can
be trimmed in software.

A DSP can assume other chores in the user terminal and may become the platform for additional protocol
layers required for a given network, assuming enough spare MIPS are available, and it may even be
reconfigured to interface with other networks on multiple layers.

DSP chips are on the same fast track as CPUs, with smaller feature size, higher speed, lower power, and
lower voltage required with each new generation. Competition among several major corporations has
brought pricing down to levels that compete favorably with discrete analog and ASIC implementations.

Mobitex DSP Modem Characteristics

Code Size and DSP MIPS Requirement

The Mobitex modem code is actually two distinct algorithms associated with half-duplex transmit and
receive functions. The receive (digital demodulator) algorithm is more complex and embodies most of the
important features necessary for a successful modem design. As with all modems, receiver code requires
more processor power, as shown in Table 1.

Table 1. Receiver-Code Processor Power Requirements

Function Code Size TMS320C25 MIPS Requirement

Transmit GMSK Modulator 256 words 3

Transmit PN Generator 128 words 1

Receiver Digital Demodulator 500 words 6

Receiver ~iscriminatort 128 words 4

t Discriminator code is required if the N D interface is receiver IF.

Bit-Error-Rate Performance

The BER performance of a pair of the Mobitex modems was measured in the laboratory. GMSK IF and
Gaussian noise are summed to create an approximation of the noisy radio channel, representative of weak
receive signals. Signal and noise power levels are calibrated relative to each other and converted to Eb and
No values through bit rate and equivalent bandwidth normalization. The test scenario increments noise in
l-dB steps and captures BER data.

Results are plotted against theoretical performance in Figure 2. Performance is quite close to ideal
(<0.5 dB) over the range of data shown. Transmit GMSK is a continuous 29-1 pseudorandom noise (PN)
code.

Figure 2. Bit Error Rate Versus EdN, Modem Performance

Measured

Theoretical

Modulator Design

GMSK.3 Modulation

GMSK has been widely proposed and utilized for mobile radio data communications. In addition to
Mobitex, GMSK is used for GSM (European digital cellular) and CDPD in the U.S. Several characteristics
that make it especially attractive for these applications are:

Spectral efficiency (12.5-kHz channels for 8-kbps GMSK.3)
Constant RF envelope (efficient classC amplifiers and hard-limiting receivers)
Compatibility with analog FM techniques
Reasonable performance (assuming proper modem techniques) in multipath environment

As illustrated in Figure 3, GMSK.3 is generated with Gaussian low-pass filtered bipolar data, applied to
a DC coupled FM modulator, set to a modulation index of 0.5.

Figure 3. Idealized GMSK.3 Generation

The .3 suffix on GMSK refers to the BT, or bandwidth, symbol time product. Alternatively, BT can be
expressed as the ratio:

F, / F, = 0.3 for GMSK.3

where Ft, is the transmit filter with a 3-dB bandwidth and 2.4-kHz frequency, and F, is the symbol rate.

Fsym=8 kbps F3d~=2.4 KHz FM Modulator

As the ratio increases, more energy at higher frequencies is transmitted, occupying more radio spectrum.
A decrease in ratio below 0.2 attenuates higher frequencies significantly, compromising obtainable
performance.

Bipolar
Data

The eye pattern for GMSK.3 baseband signals is shown in Figure 4. An eye pattern conveys every possible
trajectory in the transmitlreceive data baseband waveform synchronized to symbol timing. It is useful
because it can very quickly convey thefidelity of transmit and receive data and is a strong diagnostic tool
in the wireless development environment.

Gaussian
Low-Pass

Filter

rn = 0.5
8 kbps

b GMSK.3
Modulated RF

Figure 4. Eye Pattern for 8-kbps GMSK.3,215-1 Length
Pseudorandom Transmit ata at

t Signal observed at the output of the transmit filter

GMSK Modulator Architecture

A block diagram of the modulator DSP implementation is shown in Figure 5.

Figure 5. GMSK Modulator DSP Implementation

TMS320C25 DSP r-----------------
1 GMSK Modulator ,2-Tap I ' PN Transmit I Gen I

I
Filter

I -
Transmit 1, I Data Level , e t + .hi. + 1 1

-
Data In ' I

1 O l O l . f I
+'

I Gen Low-Pass

I
I Filter

8-kbps 1 I
Clock 4 : Tlmer

Out I

The present GMSK modulator algorithm accepts data from upper OSI layers that has been packetized, error
encoded, and scrambled according to Mobitex specifications. In most systems, this is accomplished on a
CPU in the application computer or in a separate microcontroller. Ultimately, these functions can occur on
the DSP.

The modulator algorithm either accepts external data or can generate pseudorandom (PN) data with z7-1,
29-1, and 215-1 length codes for transmit test purposes. This feature enables easier bit-error-rate
measurements, eye-pattern checks, and other system measurements during integration with radio gear.

The DSP algorithm implements a level shift and digital low-pass filter function on the square data provided
by the other OSI layers or the algorithmic PN generator. A 12-tap (two symbol length) linear-phase FIR
structure forms the transmit filter, which is designed to approximate the ideal Gaussian transmit filter very
closely. The FIR 3-dB point is set to 2.4 kHz for BT = 0.3. The modulator sample rate is 48 kHz, producing
a baseband bandwidth with significant energy out to approximately 5 kHz and virtually no energy beyond
10 kHz.

The modem exists on an evaluation board that contains a 16-bit D/A converter and low-pass reconstruction
filter that attenuates digital spectra beyond fs/2 (24 kHz) to levels near the noise floor. Other
implementations can exploit the latest single-chip CODEC or analog interface circuits, which combine
several D/A and reconstruction filter blocks with AID converters. A single chip can thus furnish the entire
radio-analog interface. Ten-bit precision D/A converters are adequate for this application.

GMSK Demodulator Design

GMSK Demodulator Architecture
A block diagram of the demodulator structure is shown in Figure 6. The upper half of the figure shows an
external interface to a 900-MHz radio receiver. Either a baseband or an IF interface is possible with this
algorithm. The IF interface includes an FM discriminator function in the DSP code.

Figure 6. GMSK Demodulator DSP Implementation

Low-Pass

Baseband
Out

900-MHz
Receiver

IF
Out

Filter &Bit

DC to 8 kHz = Rx GMSK _ -17t.l~
1 fs = 24 kHz

Baseband or IF Interface to Rx

455-kHz to
100-MHz

1
12-Bit

RX IF

fc = 36 kHz

491 -kHz to 100.036-MHz
Crystal Oscillator

TMS320C25 DSP

1 fs = 48 kHz 1 Baud
Clock

AID Sample
Clock

A

Out

1 Received + Data
out

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i
i
I
I
I
I
I
I
1
1

_ ______________ - - - - - - - - - - - - - - - . - - - - - - - - - - - I
L

Transition
-4 VCO

Integrate
and Dump

I Track
Threshold Control I

I

I

I
I

Filter Q

+ FM Demodulator Algorithm 4- GMSK Demodulator -4 1

+

Detector

I Timing Preset 90" - Ac Acquisition1 +
I

Matched

DC - Correlator ~~~i~~~~ Valid
Packet

Hilbert FM 1
Transformer Discriminator Bit Sync

+

Frame
Sync

Decision and
Decision

Feedback

The demodulator algorithm employs noncoherent techniques to arrive at each data decision. Two entry
points for digitized data from the receiver are shown in Figure 6.

Digitized IF Processing

As the cost and power consumption of DSP MIPS and associated A/D converters decrease, it will make
sense to locate the A/D converter closer to the antenna, somewhere in the radio IF strip. Traditionally,
digital processing at IF has been applied to expensive military systems in which the highest possible
receiver performance is required. As DSP costs decrease and techniques improve, IF processing may
become standard in wireless applications, where both benefits-cost and performance-are possible. In
anticipation of this next step, a radio IF interface to the DSP demodulator algorithm was created.

Band-limited radio IF (presumed to be at 36 kHz center, 12.5 kHz wide for Mobitex) is digitized at a sample
rate of 48 kHz, realizing a digital down-conversion to a center frequency of 12 kHz. The DSP algorithm
then implements a close approximation of a 0°/900 splitter that feeds a pair of identical, 7-tap low-pass
FIR receive filters, carefully bandwidth optimized under noise conditions for best overall demodulator
performance.

Digital FM Discriminator

The FM discrimination algorithm maps the frequency of complex IQ samples to a voltage using a
differential estimation technique. Sample-rate decimation by a factor of 2 is also used, yielding subsequent
processing that executes only on every other input IF sample. After decimation, the discriminator
normalizes each sample by 12 + 4 2 to wipe off any IF energy variation, due to radio channel fades that fall
out of the receiver's hard limiting or AGC range. The dynamic range of the normalization algorithm
approaches 40 dB when used with a 12-bit A/D converter.

Normalization becomes a significant issue if the receiver RFAF chain must have linear or AGC
loop-controlled gain. Certain modulation types require linear receiver performance. In a
multinetwork/infrastructure environment, linearity may be a requirement. The normalization algorithm
exists to cover that eventuality, even though most implementations to date have used hard limiting and
traditional FM receiver techniques.

Baseband Processing

A second entry point to the demodulator algorithm can be selected just after the digital FM discriminator
of Figure 6. The receiver baseband (audio DC to 8 kHz) that carries the data waveform is digitized by at
least an 8-bit AD converter at a sample rate of 24 kHz. Less precision is required because the receiver hard
limiting and discriminator mitigate most of the envelope fluctuation due to flat signal fading. Processing
beyond this point is identical regardless of which input is selected.

Packet Acquisition

All received Mobitex packets are qualified by an acquisition process that recognizes and exploits
information in the first two data structures of the Mobitex packet, which is shown in Figure 7.

Figure 7. Mobitex Packet Structure

00 W Bit Sync Interval O0 4- Frame Sync Interval ---+
I I

16 Bits
11 11 11

k 4 m s k

Demodulator achieves bit sync and
begins optimal data

t
Demodulator compares frame sync Rx pattern

demodulation. to reference pattern. If >1 mismatch, acquisition
attempt is abandoned. Otherwise, ensuing Mobitex

data is demodulated until the packet is complete.

16 Bits I
Mobitex Data -+

When the demodulator is not tracking and demodulating a qualified packet, an FIR filter-based structure
that implements pattern specific correlation is executed. The correlator searches for the bit sync pattern.
When correlator output exceeds a preset threshold, demodulation begins and frame sync, which is a fixed,
country-specific pattern 16 bits long, is expected. If frame sync does not occur within the next 16 bits with
one bit error or less, the packet acquisition attempt is abandoned and the correlation process is begun again.
In this manner, probability of false acquisition is kept very small, and higher OSI layers in the user terminal
receive data only when qualified packets are present.

Simultaneous to successful correlation, a low-bandwidth tracking-loop algorithm is invoked. Data
transitions (zero crossings) are extracted, and the algorithm attempts to keep crossings aligned by adjusting
the DSP timer register, which ultimately generates sample pulses to the A/D converter. The resulting servo
loop is invoked as long as the qualified packet data is present. This feature is especially important for long
packets and operates reliably even with very weak receive signals.

Also, after each successful correlation, a DC estimate (which is proportional to receiver frequency offset
relative to base station) is extracted from the bit sync sequence and is used to cancel DC offsets in the
baseband demodulation (track) path. The modem performance is made tolerant of frequency offsets in this
manner.

Finally, the correlator triggers an A/D sample timing preset. Correlator output information is examined,
and a precise estimate of correct initial A/D sample phase and frequency is made. The preset timing is
subsequently updated very slowly at each zero crossing with the aforementioned servo loop.

Data Demodulation
After correlation to the packet bit sync pattern occurs, the data demodulation/decision process begins.
Conceptually, the goal of the decision process is simple: every three samples (at 24 kHz) produce either
a zero or one data decision such that the original packet data, prior to modulation, is recovered.

The decision process employs matched filtering (which is identical to transmit filtering),
integrate-and-dump, and decision feedback techniques to minimize the probability of bit errors. The
integrate-and-dump and decision feedback algorithms are especially effective under disturbed conditions,
such as with either fixed or time-varying multipaths, and they also reduce modem sensitivity to IS1 induced
by receiver filters.

Design Adaptations for CDPD
The CDPD modem requirement is for GMSK.5 radio waveforms at 19.2 kbps. CDPD utilizes cellular
channels that are full-duplex; the packetized protocol can use this characteristic, though a half-duplex
CDPD implementation is also possible. A computer simulation of the transmit eye pattern for GMSK.5 is
shown in Figure 8.

Figure 8. Computer-Simulated Eye Pattern for 19.2 kbps GMSK.5
(Amplitude Versus Time)

As compared to Mobitex, the higher baud of CDPD dictates use of a more powerful DSP chip, such as one
from TI'S TMS320C5x family, to support the modem function. Generally speaking, a good estimate for
half-duplex CDPD MIPS required for the GMSK demodulator can be obtained by simply scaling the
6-MIPS benchmark for the baseband-interfaced Mobitex demodulator. A conservative approximation is
based on the ratio of bauds (19.2 / 8 = 2.4). CDPD, therefore, can require up to 14.4 MIPS peak for the
receive modem function.

Digital demodulators can operate with fewer samples per baud than were assumed above. The Mobitex
modem uses an AID converter to sample IF at 48 kHz or baseband at 24 kHz. The algorithm ultimately uses
three samples per 8-kHz symbol in the data-decision section.

For CDPD, it is estimated that if two samples per baud are used, approximately 0.7 dB of performance is
sacrificed. The associated baseband sample rate is 38.4 kHz, and the corresponding MIPS requirement is
approximately 10 (33% less than the 3 samples-per-baud case).

CDPD's GMSK.5 uses a higher BT factor (0.5). The immediate result is an eye pattern that is less filtered
than shown in Figure 4. Overall modem receive performance is correspondingly improved. Adjustments
of constants in the current decision feedback algorithm are necessary to optimize performance, though the
current constants (based on GMSK.3) will operate surprisingly well.

CDPD transmit baseband eye pattern has been simulated and is shown in Figure 8. The Gaussian transmit
filter 3-dB frequency is 9.6 kHz. The transmit and receive Gaussian digital filter is adjusted for the new
bandwidth.

Transition of GMSK Modem to TMS320CSx

Work has begun to translate the existing 'C2x code to a 'C5x processor. The GMSK modulator and portions
of the demodulator algorithm are currently able to execute successfully on TI's EVM system. The
translation is very straightforward, using TI's DSP assembly conversion utility (DSPCV.EXE), and the
utility is able to convert 'C2x source code (.ASM) files directly to 'C5x source code files. A minor amount
of manual intervention is necessary after running the utility. This intervention is associated with memory
directives that do not have exact equivalents between the two processor families.

Conclusions

Packet networks such as Mobitex or CDPD generally operate with a sophisticated protocol that allows for
error detection, limited error correction, and, if all else fails, packet retransmission. All data is eventually
received successfully across the link. High-performance modem techniques are employed to meet overall
network performance requirements because inferior modems can generate unnecessary traffic, requiring
repetition of missed data.

The Mobitex modem code exists on a 16-bit fixed-point TMS320C25, which is an entirely adequate
platform for the core modulation~demodulation algorithms implemented. No issues associated with the
16-bit fixed-point precision were encountered. In general, no applications are envisioned in which
floating-point processors or wider fixed-point registers are necessary for wireless modems anticipated for
future implementation.

The existing code is portable to the Texas Instruments TMS320C5x family, which will ultimately offer
3.3-volt, 40-MIPS operation, suitable for battery-powered portable operation. The fully implemented IF
interface Mobitex modem algorithm requires 10 MIPS for demodulation. The 'C5x family and similar
processors from other manufacturers open prospects for other layers of wireless protocol executing on the
same DSP, with ultimate partitioning of DSP and controller-processing responsibilities dictated by
DSP/processor cost, memory requirements, speed and power consumption, and interface issues. All new
designs should weigh these issues carefully.

The DSP chip offers flexibility beyond Mobitex. Multiple wireless infrastructures, including CDPD, can
ultimately be accommodated on the same processor, which, in fact, may be necessary for long-term product
survival. As wireless/PCN industries take shape, the emphasis will likely be on flexibility. Systems that
are incompatible starting at the lowest 1inWphysical layers will dictate that user radiolmodem devices be
capable of loading and executing new modem and control (protocol) code as needed. A single user terminal
can thus interface with multiple infrastructures.

Code Availability

The associated software is available for licensing from Synetcom Digital Incorporated, 1426 Aviation
Boulevard, Suite #203, Redondo Beach, California 90278.

References
1. Feher, Kamilo, Advanced Digital Communications Systems and Signal Processing Techniques,

Prentice-Hall, 1987.

2. Hirono, Masahiko, Miki, T., and Murota, K., "Multilevel Decision Method for Band-Limited
Digital FM with Limiter-Discriminator Detection", IEEE Transactions on Vehicular
Technology, August 1984, pp. 114-122.

3. Mobitex Integace Specz$cation, Revision 2A, RAM Mobile Data, Woodbridge, New Jersey,
February 1993.

4. Cellular Digital Packet Data System Specification, Release 1 .O, Book 111, Volume 4, July 19,
1993.

Part VI
Equalization and Channel Estimation

Equalization Concepts:
A Tutorial

David Smalley
Atlanta Regional Technology Center

Texas Instruments Incorporated

Introduction

DSP-based equalizer systems have become ubiquitous in many diverse applications including voice, data,
and video communications via various transmission media. Typical applications range from acoustic echo
cancelers for full-duplex speakerphones to video deghosting systems for terrestrial television broadcasts
to signal conditioners for wireline modems and wireless telephony. The effect of an equalization system
is to compensate for transmission-channel impairments such as frequency-dependent phase and amplitude
distortion. Besides correcting for channel frequency-response anomalies, the equalizer can cancel the
effects of multipath signal components, which can manifest themselves in the form of voice echoes, video
ghosts or Rayleigh fading conditions in mobile communications channels. Equalizers specifically designed
for multipath correction are often termed echo-cancelers or deghosters. They may require significantly
longer filter spans than simple spectral equalizers, but the principles of operation are essentially the same.

The literature is rich with practical and theoretical treatments of the various equalization schemes. This
article attempts to familiarize you with some basic concepts associated with channel equalization and data
communication in general. It is hoped that the liberal use of signal plots will lead to an intuitive
understanding of such concepts as intersymbol interference and multipath effects. To this end, the Mathcad
4.0 [15] files used to create the figures have been made available. See the Code Availability section on page
174. You are encouraged to experiment further with these files. For a more rigorous mathematical
treatment, refer to the numerous books and articles cited on page 174. Of particular note is the excellent
tutorial by Shahid Qureshi [I], after which this article is loosely patterned.

Of particular interest today is the area of digital cellular communications, which has seen wide use of
fixed-point DSPs such as the TMS320C5x. This family of processors provides the processing power to
perform the requisite adaptive equalization while at the same time handling such tasks as channel coding,
error correction (-terbi algorithm), and vocoding functions (VSELP), thus providing a highly integrated
and yet flexible solution to baseband processing. The last section of this paper provides a brief survey of
adaptive equalization for digital cellular systems. For a detailed application example, please see the
application report Channel Equalization for the IS-54 Digital Cellular System With the TMS320C5.x on
page 177.

What Is Intersymbol Interference?

Consider what happens when pulsed information is transmitted over an analog channel such as a phone line
or airwaves. Even though the original signal is a discrete time sequence (or a reasonable approximation).
the received signal is a continuous time signal. Heuristically, one can consider that the channel acts as an
analog low-pass filter, thereby spreading or smearing the shape of the impulse train into a continuous signal
whose peaks relate to the amplitudes of the original pulses. Mathematically, the operation can be described
as a convolution of the pulse sequence by a continuous time channel response.

The operation starts with the convolution integral:

where r(t) is the received signal, h(t) is the channel impulse response, and x(t) is the input signal. The second
half of the equation above is a result of the fact that convolution is a commutative operation.

Component x(t) is the input pulse train, which consists of periodically transmitted impulses of varying
amplitudes. Therefore,

x(t) = 0 for t # kT (2)

x(r) = 'Y, for r = kT (3)

where T represents the symbol period. This means that the only significant values of the variable of
integration in the above integral are those for which t = kT. Any other value of t amounts to multiplication
by 0. Therefore r(t) can be written as

This representation of r(t) more closely resembles the convolution sum familiar to DSP engineers. Note,
however, that it still describes a continuous time system. It shows that the received signal consists of the
sum of many scaled and shifted continuous time system impulse responses. The impulse responses are
scaled by the amplitudes of the transmitted pulses of x(t).

As an example, consider the calculation for r(t) at some noninteger time index (t = 1.1)

One can see how received values for any time t are computed. Each pulse value of the input sequence, xk,
contributes a component of the output summation.

Because you are interested in processing the received signal on digital hardware, you must represent the
received signal as a difference equation. Physically, you are periodically sampling the received waveform.
For the case of pulse-amplitude modulation, it is sufficient to sample the received signal at the symbol
transmit rate, 11~2 . (In some instances it can be advantageous to sample at a multiple of the symbol rate
to implement afractionally spaced signal processing system.) To represent the sampling mathematically,
replace t with nT, where, again, T is the symbol transmit rate:

which can also be written as

One last factor to account for is sampling phase. Unless the sample clock is perfectly synchronized with
the transmit clock, the sample-phase offset will be nonzero. To account for an arbitrary phase offset in the
equation above, add an offset to to the time index.

In the equation above, the first term is the component of r(t) due to the Nth symbol. It is multiplied by the
center tap of the channel-impulse response. The other product terms in the summation are intersymbol
interference (ISI) terms. The input pulses in the neighborhood of the Nth symbol are scaled by the
appropriate samples in the tails of the channel-impulse response. Below are numerical examples for various
values of n with @ = 0.1 for values of k spanning the five sample neighborhoods around n.

Figure 1 illustrates a pulse train to be transmitted. The center pulse is %, the pulse at 1 is xi, the pulse at
-1 isx-1, etc. If you assume an arbitrary impulse response for the transmission channel, you can construct
the received signal r(t). This signal is shown superimposed on the transmit waveform x(t). In actuality, the
received waveform would be time shifted because of the channel delay, but for clarity r(t) is shown with
no delay relative to x(t). Note that the peaks of r(t) roughly relate to the sense of the corresponding transmit
pulses; however, the value of r(t) at the sample instants can be quite different from those transmitted. This
is because of IS1 effects.

Figure 1. A Pulse Train to Be Transmitted

Figure 2 shows the component of r(t) due to a single input pulse xi, which is superimposed on the received
signal r(t). Recall that the shape of this component is the same as that of the transmit-channel impulse
response. The values of this individual pulse response at the sample periods (which are multiples of T) are
indicated by the black dots. Note that although the signal component in this example is sinc shaped, the

To determine the value of the received signal at t =0, r(O), sum the contributions of the received impulse
responses due to x,, x-,, x,, x-,, x ,... .

Figure 3. Contribution Due to x-1

As shown in Figure 3, the contribution due to x-1 is the value at t=O of the scaled and shifted impulse
response corresponding to the x-1 transmit pulse. In this case the impulse response is scaled by -1, which
is the value of x-l and is advanced by one sample period because x-1 is transmitted one period prior to q.
Therefore, the x-1 symbol results in a small negative component of r(0).

Figure 4. Contribution Due to x l at t=O

Similar reasoning explains the contribution due to xl , except this time use the value of the time-delayed
impulse response at t = O as illustrated in Figure 4.

The received value of r(t=O) is computed by summing the contribution of xg plus all of the IS1 terms; that
is, x+,-,, x+ , -~ , x+,-~, Theoretically, this is an infinite sum, but as shown here, the channel response
is typically a decaying exponential. Therefore, in practice, an FIR system can be used to model and
compensate the system.

From the example above you can see that the nth received sample is primarily influenced by the nth symbol
transmitted; however, there are IS1 components contributed by prior and subsequent transmit symbols. The
terms due to prior symbols (x,-~ and before) are termed postcursor IS1 [3] because the nth transmitted
symbol affects on symbols following the nth received symbol. The nature of this IS1 can be determined by
examining the right-hand portion of the system impulse response. Alternately, the IS1 terms due to
subsequent transmit symbols (x,+~ and beyond) exert precursor IS1 [3] because the nth transmit symbol
influences received symbols prior to the nth. These IS1 terms are determined by the shape of the left-hand
portion of the system impulse response.

Pulse Shaping

From the preceding figures, it is apparent that IS1 is caused when the tails of the received pulses overlap
at the sample points, causing uncertainty in the received pulse amplitude. It is possible to shape the transmit
pulses in a manner designed to minimize the effects of IS1 on the received waveform. As shown in Figure
5, the set of shifted pulse responses overlap, but their tails all possess nulls at the sample instants. Therefore,
the only contribution to r(nT) is due to the nth transmit pulse. As shown below, the received signal r(t)
equals the amplitude of the individual sinc functions at the sample instants. Compare this with the previous
example in which r(t) has a more ambiguous relationship to the individual pulse responses.

Figure 5. Set of Shifted Pulse Responses

If a received pulse shape can meet the following property, zero IS1 can be achieved:

Equation (12) simply means that there are zero crossings at the sample rate. It can be shown that this results
in a spectrum possessing vestigial symmetry. That is, the frequency response exhibits odd symmetry about
1/2T, causing the sum of repeat spectra to equal a constant. It is important to note that this spectrum may
be closely approximated by a realizable filter having a gradual rolloff around 1/2T.

Figure 6. Odd Symmetry

\
Filter exhibits odd symmetry
about frequency 1/(2T)

Figure 6 illustrates the notion o f odd symmetry.

Figure 7. Spectral Response at 1/(2T)

1 /(2T)

Baseband spectrum Lower edge of repeat spectrum

a

Figure 7 shows the spectral response around 1/(2T). The repeat spectra centered at 1/T actually overlaps
the baseband spectrum, but as long as the sum of the two responses is constant, the criterion for zero IS1
is met.

One class of linear phase filters possessing vestigial symmetry is the raised cosine family:

This filter is flat up to 1/(2T)-/I and 0 beyond 1/(2T)+p. The complicated part of the equation above
describes the shape of the odd symmetric transition band. Closer inspection of the equation for the
transition band quickly reveals the shape of the signal. It is really the cosine of an argument ranging from
0 to n with a DC offset of +1, hence raised cosine. The other variables scale the backwards S shape in the
x and y dimension to fit the curve into the flat portions of the response.

The impulse response of the signal possessing the raised cosine spectrum is as follows:

Note that the Equation above can be broken into two parts: the familiar sinc function, which insures that
the product will have nulls at multiples of T, and a second term that is an exponentially decaying sinusoid
whose rate of decay is proportional to p. The time response of the raised cosine signal for various values
of p is shown in Figure 8.

Figure 8. Time Response of the Raised Cosine Signal

It is common practice to filter the signal pulses at the transmitter with the frequency characteristic described
above in Figure 8. Having performed this operation, if the signals are sent down an ideal channel (that is,
a channel with a channel-impulse response of 6 function and no noise), the received signal should exhibit
no ISI. Note that in general this condition will not be met, as the channel will have its own shaping effect
on the transmitted signals. The effects of noise are considered in the next section of this paper.

In summary, the obvious problem caused by IS1 is uncertainty in the received data samples. Instead of
receiving the discrete levels that were transmitted, the receiver finds a continuous signal whose samples
can take on any value. The receiver must then form an estimate from the received values to decide on the
transmitted signal.

Equalization

As discussed in the Pulse Shaping subsection on page 155, a properly shaped transmit pulse resembles a
sinc function, and direct superposition of these pulses results in no IS1 at properly selected sample points.
In practice, however, the received pulse response is distorted in the transmission process and may be
combined with additive noise. Because the raised cosine pulses are distorted in the time domain, you may
find that the received signal exhibits ISI. If you can define the channel impulse response, you can
implement an inverse filter to counter its ill effect. This is the job of the equalizer. See Figure 9 below, which
depicts the response to a single transmit pulse at various points in the system.

Figure 9. Transmission Process With Example Pulse Responses

The original rectangular transmit pulse is shaped by the raised cosine filter. This ensures that the sampled
spectra do not alias and therefore there is no ISI. The next waveform portrays the distorted impulse
response received at the input of the equalizer. This distortion can be caused by spectral shaping due to a
nonflat frequency response or multipath reception of the channel. This distortion can be removed by
applying a filter that is the exact inverse (multiplicative inverse in spectral domain) of the channel
frequency response.

Multipath Effects on Frequency Response

Multipath effects describe the situation in which there are several propagation paths from transmitter to
receiver. Most commonly, this results when there are reflected signals detected at the receiver following
the direct path. The multipath phenomenon can be modeled by an FIR system. The center tap represents
the direct path, while the succeeding tap weights represent the amplitudes, delays, and phases of the
reflected paths. What does this look like in the spectral domain? For simple examples, see the two cases
described in Figure 10 and Figure l I .

Figure 10. Case 1: Ideal Channel, No Multipath Effects

Figure 10(a) above shows the time response of an ideal transmission path, which is a 6 function. Such a
channel exerts no spectral distortion or delayed signals. Figure 10(b) shows the spectral response of such
a system. Note that the frequency magnitude response is perfectly flat, as indicated by the solid horizontal
line.

Figure 11. Case 2: System With a Single Unattenuated Multipath Channel

Figure 11 (a) shows the time response of a system that contains a single multipath channel. The first nonzero
sample of the response represents the direct path, while the second represents a delayed path to the receiver.
In this instance, the pulses are identical in amplitude and phase and are separated by ten sample intervals.
Notice in Figure 1 l(b) that the magnitude response exhibits @I2 nulls, where @ represents the sample delay.
Even though you are effectively adding two identical flat spectra (as shown in Figure 10(b)), the time delay
results in a phase delay in the spectral domain. This phase delay results in nulls where the two signals are
of equal amplitude but opposite phase.

Obviously, multipath effects can have major effects on the system spectral response, thereby providing
another justification for channel equalization.

Figure 12. Equalization Process

-5-4 -3-2-1 0 1 2 3 4 5

Channel Impulse Response Equalizer Impulse Response Impulse Response at
Output of Equalizer

Equalizer Filter u
As depicted in Figure 12, the task of the equalization system is to determine and apply a filter that results
in an equalized impulse response having zero IS1 and channel distortion. This means that convolution of
the channel impulse response and the equalizer impulse response must equal 1 at the center tap and have
nulls at the other sample points within the filter span.

Two main techniques are employed to formulate the filter coefficients: automatic synthesis and adaptation.
In automatic-synthesis methods, the equalizer typically compares a received time-domain reference signal
to a stored copy of the undistorted training signal. By comparing the two, a time-domain error signal is
determined that may be used to calculate the coefficient of an inverse filter. The formulation of this inverse
filter may be accomplished strictly in the time domain, as is done in ZFE and LMS systems, which are
examined in more detail in following sections. Other methods involve conversion of the received training
signal to a spectral representation. A spectral inverse response can then be calculated to compensate for
the channel response. This inverse spectrum is then converted back to a time-domain representation so that
filter tap weights may be extracted.

The second method of filter synthesis is adaptation. In adaptation the equalizer attempts to minimize an
error signal based on the difference between the output of the equalizer zk and the estimate of the

transmitted signal i,, which is generated by a decision device. In other words, the equalizer filter outputs
a sample. The predictor or decision device determines what value was most likely transmitted. The
adaptation logic endeavors to keep the difference between the two small. The main idea is that the receiver
takes advantage of the knowledge of the discrete levels possible in the transmitted pulses. When the
decision device quantizes the equalizer output, it is essentially throwing away received noise.

The main drawback of automatic synthesis is the overhead associated with the transmission of a training
signal, which must be at least as long as the filter tap length. Typically, training is used to converge a filter
at startup as part of the initialization overhead. Adaptation techniques can then be employed to track and
compensate for minor variations in channel response on the fly [I].

Zero-Forcing Equalization
One computationally efficient method of forming an inverse filter is the zeroTforcing technique. To
formulate a set of FIR inverse filter coefficients, a training signal consisting of an impulse is transmitted
over the channel. By solving a set of simultaneous equations based on the the received sample values, a
set of coefficients can be determined to force all but the center tap of the filtered response to 0. This means
the N- 1 samples surrounding the center tap will not contribute ISI. The main advantage of this technique
is that the solution to the set of equations is reduced to a simple matrix inversion.

The major drawback of ZFE is that the channel response may often exhibit attenuation at high frequencies
around one-half the sampling rate (the folding frequency). Since the ZFE is simply an inverse filter, it
applies high gain to these upper frequencies, which tends to exaggerate noise. A second problem is that the
training signal, an impulse, is inherently a low-energy signal, which results in a much lower received
signal-to-noise ratio than could be provided by other training signal types [l , 41.

Example of 7- Tap ZFE Computation
First, create a simulated received pulse response. Begin with the equation of a sinc function, which is a
simplification of the raised cosine pulse. Then simulate additive noise by the addition of random thermal
noise. Finally, simulate sampling phase jitter with the random jitter term added to the time index. The
simulated pulse response is plotted in Figure 13. The dotted trace represents the ideal noiseless channel
response.

Figure 13. Simulated Pulse Response

sinc(t) : = Sin(n t, noise(t) : = rnd(0.2)- 0.1 jitter(?) : = rnd(O.lO)-0.05 7 c . t

t : = -7,-6.9, 7.0 r(t) : = sinc(t + jitter(t)) + noise (t)

1

0.5

sinc(1)
r(t)

0

-0.5
-8 -6 -4 -2 0 2 4 6 8

t,t

A vector is formed from the received samples. 2N- 1 samples are required to implement an N-tap filter.
For the example 7-tap ZFE, you must collect 13 samples. Therefore, 13 equally spaced samples of r(t) are
formed into the column vector V.

Next, form a matrix, PR, from the received samples. Each row consists of seven adjacent samples in
time-reversed order. The first element of the top row is the center tap of the pulse response. The first element
of the second row is the sample following the center tap, etc.

Next, compute the inverse of the channel response matrix PREQ. -

The center column of PREQ contains the coefficients of the ZFE.

j : = 0...6

Cj : = PREQjS3

-0.023

Check the results by multiplying the coefficient vector by the row vectors of the received sample matrix.
The dot products should result in the ideal channel response for the filter span, that is, O,0,0, 1,0,0,0. As
shown below, the results check.

The coefficients for the ZFE filter response are shown plotted in Figure 14.

Figure 14. ZFE Filter Coefficient

1.5

Because the Japanese television broadcasters employed an impulse-like training signal, many of the first
video deghosters for use in Japan employed ZFEs. To provide a higher signal-to-noise ratio (SNR) for the
received training signal, these systems averaged the training signal over several training intervals. To
further improve SNR, the U.S. broadcast industry has selected a chirp-like training signal, which has
inherently higher energy. This signal, transmitted during the vertical blanking interval, allows suitably
equipped receivers to automatically synthesize filters to alleviate the effects of multipath interference; that
is, visible ghost images.

LMS Equalization

The least mean squared (LMS) equalizer is a more general approach to automatic synthesis. Instead of
solving a set of N simultaneous equations as was done in the ZFE, the coefficients are gradually adjusted
to converge to a filter that minimizes the error between the equalized signal and the stored reference. The
filter convergence is based on approximations to a gradient calculation of the quadratic equation
representing the mean square error. The beauty of the approach is that the only parameter to be adjusted
is the adaptation step size a a . Through an iterative process, all filter tap weights are adjusted during each
sample period in the training sequence. Eventually, the filter will reach a configuration that minimizes the
mean square error between the equalized signal and the stored reference. As might be expected, the choice
of a a involves a tradeoff between rapid convergence and residual steady-state error. A too-large setting
for a a can result in a system that converges rapidly on start-up, but then chops around the optimal
coefficient settings at steady state.

The LMS equalizer can also be shown to have better noise performance than the ZFE. Heuristically, the
ZFE calculates coefficients based upon the received samples of one training signal. Since the captured data
will always contain some noise, the calculated coefficients will be noisy - noise in / noise out. On the other
hand, the LMS algorithm gradually adapts a filter based on many cycles of the training signal. If the noise
is zero mean and is averaged over time, its effect will be minimized - noise integrates to 0.

A second major benefit to this approach is that you can employ any arbitrary training sequence. In general,
you would prefer to use a high-energy signal to improve the received signal-to-noise ratio of the training
sequence. In contrast, the unit impulse training signal required by the ZFE is probably the lowest energy
flat-spectrum signal possible. Typical training sequences employed for LMS equalization include
pseudorandom noise sequences and chirp-type signals.

Figure 15. Filter Output Computation

+ + + + +

Transversal Filter

x4 x3 x2 x 1 xo

- 2-1 - ,-I - ,-I . ,-I - ,-I - ,-I
Training Signal Storage

In Figure 15, the portion in the lower shaded rectangle is a standard transversal filter (FIR). The lower set
of delays represents storage for the reference version of the training signal. Each time a sample is received,
a new filter output is computed and compared to the corresponding reference signal, thereby forming an
error signal. This error signal is then used to scale the received sample values contained in the filter storage
elements. These scaled sample values are then added to the current filter coefficients to form the updated
coefficients to be used at the next sample time.

The coefficients are updated according to the following equation:

As an example, consider the calculation for the third tap weight (n = 2) at time k = 5:

This means that the C2 coefficient for the next sample period equals the current C2 coefficient minus a
correction term. The correction term is simply the current input sample corresponding to the C2 tap
multiplied by the current error value scaled by the adaptation rate term a.

If the filtered sample output is much smaller than the actual value for the training signal, the error is a large
negative value. The received sample values are scaled by this relatively large value, and the product is used
to adjust the individual coefficients up or down (depending on the sign of the stored sample values) by a
relatively large amount. For a smaller discrepancy between the filter output and training signal, the error
sample and, hence, the amount of adjustment, will be smaller. The fact that each coefficient is changed by
a different adjustment term (based on distinct received samples) allows the filter coefficients to converge
from any initial state to one that minimizes the mean square error between the received training signal and
the reference.

Decision-Directed Equalization

The previous equalizer systems are linear in that they employ linear transversal filter structures. The filters
implement a convolution sum of a computed impulse response with the input sequence. Often with data
communication systems, one can take advantage of prior knowledge of the transmit signal characteristics
to deduce a more accurate representation of the transmit signal than can be afforded by the linear filter. For
instance, a bipolar transmit signal consists of pulses with amplitudes of * 1. This signal is then pulse
shaped, distorted by the analog channel, and filtered by a linear FIR filter. The processed signal is no longer
a bipolar sequence. Instead, the output values span the range of values representable by the hardware, for
example, the range of numbers specified by Q1.5 notation [5] . It is possible to devise a decision device (a
predictor or a slicer) that estimates what symbol value was most likely transmitted, based on the linear filter
continuous output. For example, in the case of the bipolar sequence transmission scheme, a very simple
decision device could replace all positive values with a positive 1 and all negative values with a negative
1. The difference between the decision device input and output forms an error term which can then be
minimized to adapt the filter coefficients. This is true because a perfectly adapted filter would produce the
actual transmitted symbol values, and, therefore, the slicer error term would go to 0. In practice, the error
is never 0, but if the adapted filter is near ideal, the decisions are perfect. In this case, the slicer is effectively
throwing away received noise with each decision made.

Coefficients can be updated in a manner similar to that employed by the LMS equalizer. There is, however,
one important distinction. In Figure 16, the error term is computed as the difference between the input and
the output of the decision device, as opposed to the LMS error term, which was based on a stored reference
training signal. This means that the decision-directed equalizers do not require a training sequence. This
is a major distinction between automatic synthesis (which requires a training signal) and adaptive
techniques (which do not require a training signal).

Figure 16. Decision-Directed Equalization

- Alpha

Coefficient Update

+ FIR Filter

Decision

Decision-Feedback Equalization

Another nonlinear adaptive equalizer should be considered: the decision feedback equalization (DFE).
DFE is based on the principle that once you have determined the value of the current transmitted symbol,
you can exactly remove the IS1 contribution of that symbol to future received symbols (see Figure 17). The
nonlinear feature is again due to the decision device, which attempts to determine which symbol of a set
of discrete levels was actually transmitted. Once the current symbol has been decided, the filter structure
can calculate the IS1 effect it would tend to have on subsequent received symbols and compensate the input
to the decision device for the next samples. This postcursor IS1 removal is accomplished by the use of a
feedback filter structure.

Figure 17. Received Signal Including Additive Noise Effects

Figure 17 shows the received signal, including the effects of additive noise. Superimposed are the past four
decisions (r(O), r(-I), r(-2), r(-3)) and the traces corresponding to the channel response for each pulse.
Because you have a transverse filter that mimics the the system response, you can subtract the IS1
contributions of the past symbols (as decided) from the next received symbol (t = 1). You can see that the
decision values are sliced to f I, thereby tossing away noise that would have otherwise improperly
influenced the compensation for the postcursor ISI. As shown in Figure 17, you can see that the coefficients
of the feedback filter should converge to the right half of the channel impulse response. That is because
the output value at any time t consists of the current sample times the center tap weight, plus the previous
samples times the right half of the impulse response, plus the subsequent samples times the left half of the
impulse response. It is the previous samples times the right half impulse response that will be subtracted
by the feedback filter.

Figure 18. DFE Functional Block Diagram

I Coefficient Adaptation

I I Coefficient Adaptation

I I bO next b l next b2 next b3 next b4 next 1

Transversat Feedback Filter

In Figure 18, you can see that the DFE contains all of the same functional blocks as the previously described
decision-directed equalizer. In addition, there is a second adaptive filter structure fed by the output of the
decision device. This second filter is the feedback stage that cancels the postcursor ISI. Its inputs are the
symbol decisions, and the tap weights converge through the LMS process to resemble the tail of the channel
impulse response (taps beyond the center tap).

The adaptation formula for the feedback tap coefficients can be the same as for the feed forward section.
For the LMS approximation [l, 41:

b,(k + 1) = b,(k)-aegi ,-,, n = 0, l... , N - 1 (22)

Adaptive Equalization for Digital Cellular Telephony

The direct sequence spreading employed by CDMA (IS-95) obviates the need for a traditional equalizer.
The TDMA systems (for example, GSM and IS-54), on the other hand, make great use of equalization to
contend with the effects of multipath-induced fading, IS1 due to channel spreading, additive received noise,
and channel-induced spectral distortion, etc. Because the RF channel often exhibits spectral nulls, the linear
equalizers are not optimal due to their tendency to boost noise at the null frequencies. Of the nonlinear
equalizers, the DFE is currently the most practical system to implement in a consumer system. As discussed
below, there are other designs that outperform the DFE in terms of convergence or noise performance, but
these generally come at the expense of greatly increased system complexity. Today, most TDMA phones
employ DFE running on fixed-point DSPs such as those in the TMS320C5x [6] family. For a detailed look
at some representative systems, consult A Low-Effort DSP Equalization Algorithm for Wideband Digital
TDMA Mobile Radio Receivers [7] and Channel Equalizer for a Digital Mobile Telephone Using
Narrow-Band TDMA Transmission [8].

Advanced Adaptive Equalizer Structures
Several adaptation schemes and alternate filter structures offer better performance in some respects than
those described above. Usually this performance improvement comes at the cost of increased complexity
in terms of DSP CPU loading or logic gate count. For the most part, these are well understood algorithms
whose system performance is still being evaluated in various applications. In any case, their treatment is
beyond the scope of this tutorial in equalization concepts, and references are cited on page 174 for the
interested reader.

Lattice Filter Structures
In general, the well-known lattice filter structure 191 can be substituted for the FIR sections in the DFE
system. The lattice DFE has been shown to be less sensitive to roundoff errors than the transverse filter
DFE, though it has comparable convergence properties. Special forms of LMS and RLS adaptation for
lattice structures are summarized in Adaptive Equalization for TDMA Digital Mobile Radio [lo]. For a
detailed discussion of the implementation of lattice DFE for digital cellular radio, refer to An Adaptive
Lattice Decision Feedback Equalizer for Digital Cellular Radio [l l] .

FILS Adaptation
RLS adaptation refers to the recursive least squares algorithm. The RLS algorithm can be designed to
converge significantly faster than the LMS technique converges. Recall that the LMS coefficients are
adjusted during each sample period by the product of the current error multiplied by the appropriate signal
sample scaled by a. In the case of RLS, the adaptation is similar, but instead of scaling the adjustment by
a, a value derived from the inverse of the sample autocorrelation matrix is used to scale the errorlsample
product. As a comparison of complexity, a 20-tap (10 forward, 10 feedback) LMS update system requires
about 40 operations. A standard RLS update, on the other hand, requires on the order of 1000 operations
[lo]. For a more detailed look at RLS in digital cellular systems, see A Decision Feedback Equalizer With
a Frequency Offset Compensating Circuit for Digital Cellular Radio [12] and Bidirectional Equalization
Technique for TDMA Communication Systems Over Land Mobile Radio Channels [13].

Probabilistic Detection Algorithms
Two more advanced adaptation techniques that employ stochastic principles to minimize the probability
of error are maximum a posteriori probability (MAP) and maximum likelihood sequence estimation
(MLSE). These techniques require knowledge of the channel characteristics and the probability
distribution of the additive noise. MAP is a symbol-by-symbol detector; whereas, the MLSE algorithm
employs the Viterbi algorithm (VA) to minimize the probability of sequence error. Both approaches provide
comparable performance and are still regarded as prohibitively complex for channels with a long impulse
response, because complexity is exponentially related to the IS1 span. For a further study, consult references
[lo] and [14].

Code Availability

The associated program files are available from the Texas Instruments TMS320 Bulletin Board System
(BBS) at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ticom.

References

1. Qureshi, S.,"Adaptive Equalization", IEEE Communications Magazine, March 1992, pp. 9-16.

2 . Peebles, P.Z., Communication System Principles, Addison-Wesley, 1976.

3. Samueli, H., Daneshrad, B., Joshi, R., Wong, B., and Nicholas, H., "A 64-Tap CMOS Echo
Canceller/Decision Feedback Equalizer for 2B1Q HDSL Transceivers", IEEE Journal on
SelectedAreas in Communications, Vol. 9, Iss: 6 , August 1991, pp. 839-847.

4. Ziemer, R.E., and Peterson, R.L., Introduction to Digital Communication, Macmillan, 1992.

5. Lovrich, A. and Simar, R., "Implementation of FIRDIR Filters with the
TMS32010/TMS32020, Digital Signal Processing Applications with the TMS320 Family,
Volume 1, Texas Instruments, 1989.

6. TMS320C5.x User's Guide, Texas Instruments, 1993.

7. Bune, P., "A Low-Effort DSP Equalization Algorithm for Wideband Digital TDMA Mobile
Radio Receivers", International Conference on Communications Conference Record, June
1991, pp. 763-767.

8. Svensson, L., "Channel Equalizer for a Digital Mobile Telephone Using Narrow-Band TDMA
Transmission", 39th IEEE Vehicular Technology Conference, Volume 1, 1989, pp. 155-158.

9. Oppenheim, A.V,. and Schafer, R.W., Discrete Time Signal Processing, Prentice-Hall, 1989.

10. Proakis, J.G., "Adaptive Equalization for TDMA Digital Mobile Radio", IEEE Transactions on
Vehicular Technology, Volume 40, No. 2, May 1991.

11. Narasimhan, A,, Chennnakeshu, S., and Anderson, J.B., "An Adaptive Lattice Decision
Feedback Equalizer for Digital Cellular Radio", 40th IEEE Vehicular Technology Conference,
1990, pp. 662-667.

12. Shimizaki, Y., Nakai, T., Ono, S., and Kondoh, N., "A Decision Feedback Equalizer With a
Frequency Offset Compensating Circuit for Digital Cellular Radio", Vehicular Technology
S o c i e ~ 42nd VTS Conference, Volume 2, 1992, pp. 596-599.

13. Liu, Yow-Jong, "Bidirectional Equalization Technique for TDMA Communication Systems
Over Land Mobile Radio Channels", Proceedings, GLOBECOM, 199 1.

14. Jung P. and Baier, P.W., "VLSI Implementation of Soft Output Viterbi Equalizers for Mobile
Radio Applications", Vehicular Technology Society 42nd VTS Conference, Volume 2, 1992,
pp. 577-85.

15. Mathcad 4.0, MathSoft Inc., 210 Broadway, Cambridge, MA 02139.

Channel Equalization for the IS-54 Digital
Cellular System With the TMS320C5x

Elliott D. Hoole
Wireless Communications Systems - Semiconductor Group

Texas Instruments Incorporated

Introduction

Transmitting digital information on a radio frequency carrier is not a new concept, but it continues to attract
attention because of the need to utilize the radio spectrum more efficiently through multiple access
techniques that are available only with digital links. Digital signal processors (DSPs) are required by
today's communications equipment to perform complicated algorithms in a limited amount of time. One
such algorithm in the digital receiver is an equalizer, which is a filter that removes the distortion caused
by the communications link between the transmitting antenna and the receiving antenna.

This paper's two sections discuss ways to successfully implement an equalizer for the IS-54 standard on
the fixed-point TMS320C5x. The first section gives background on the digital modulation used in the
IS-54 and in the radio environment that should be taken into consideration when designing an IS-54
receiver. The second section describes the design of an equalizer for the IS-54.

Design Considerations

Many conditions affect a system's design. The type of digital modulation and the types of distortion and
their limits influence how the receiver is structured.

Maximum-Effect Points

The IS-54 standard uses 7c/4 differential quaternary phase-shift keying (DQPSK) to encode a pair of bits
into a phase change between two points in the complex plane. The resulting phase change is called a
symbol. The points between which the change is made are known as maximum-effect points (MEPs),
which are recovered by the receiver. The changes between them are investigated to decode the digital
information.

Figure I shows the corresponding phase changes for the four dibits. The encoding process produces an
eight-point constellation around the unit circle in the complex plane. Notice that these eight points can be
divided into two subsets of four points. One subset is composed of the four points that are located on the
axes of the complex plane. The other subset consists of the points that are in each of the four quadrants.
For a given allowable phase change, if the starting point is an axis point, the end point will be a quadrant
point. Similarly, if the starting point is a quadrant point, the end point will be an axis point. When a sequence
of bits is encoded into a sequence of phase changes, the result is a sequence of points in the complex plane,
which alternates between the subset of axis points and the subset of quadrant points.

Figure 1. d 4 DQPSK

Relationship Between
Phase Changes and Dibits

Constellation of
Maximum-Effect Points

Multipath Interference

When a radio signal is transmitted, it can propagate along many paths to reach the receiver. At the receiver
antenna, the received signal can be viewed as a complex sum of vectors with independent gains and phases.
Multipath interference is the effect of multiple versions of a transmitted signal arriving at a radio receiver
and combining in a way that produces distortion of the original signal. Figure 2 shows how multipath
interference is produced by reflections from buildings or other objects.

Figure 2. Multipath Interference

When multiple versions of the same transmitted signal arrive simultaneously, an interference pattern is
formed with the various signals combining according to their amplitudes and phases. As the mobile
receiver moves, the relationship between the amplitudes and phases of the signals from the various paths
changes, causing undulations in both the composite amplitude and the composite phase. This effect is
known as Rayleigh fading because the magnitude envelope has a Rayleigh probability distribution. Figure
3 shows magnitude and phase plots of fading for 0.64 seconds of a signal received by a mobile unit traveling
at 25 MPH.

The accepted limits [2] on the amount of gain and attenuation provided by fading are +10 dB and -30 dB,
respectively. Statistically, there is a 0.01 % probability that the faded signal will be above 10 dB and a 99.9%
probability that it will be above -30 dB.

Figure 3. Rayleigh Fading

Magnitude in dB

Phase Angle in Degrees

Intersymbol Interference

Occasionally, the arrival of some signals can be significantly delayed. This situation can result in
intersymbol interference (ISI). In other words, the received signal components of previous symbols smear
into later ones, thus producing distortion. In small cells, the propagation times of the different paths are
nearly equal, so intersymbol interference due to multiple paths is minimal. However, in large cells, the
intersymbol interference due to multiple paths can be significant. The difference in time (or symbols)
between two rays' arrivals is called the delay spread of the channel.

Another cause of IS1 is simply the bandlimited nature of the communications channel. A bandlimited
channel disperses pulses going through it. This is a result of the nonideal amplitude and phase
characteristics of the communications channel.

Severe IS1 from one or multiple sources can render the received signal unrecoverable. For situations in
which IS1 is a problem, you can use an adaptive filter called an equalizer to compensate. The channel
characteristics change considerably over the slot length of the IS-54 system; thus, adaptation of the
equalizer coefficients is required, and the adaptive equalizer's taps must change while it is filtering the data
sequence.

IS-54 defines the limit for the amount of IS1 that must be compensated for by an equalizer. The IS-54
channel model was chosen to consist of a faded main ray and an independently faded delayed ray. The limit
on the amount of delay is one symbol time (41.17 ps). The delayed ray can also be of equal nominal
magnitude to the main ray. Figure 4 shows the effect of IS1 on the n14 DQPSK constellation. with the
delayed ray three dB below the main ray.

Figure 4. lntersymbol Interference: Interferer Level -3 dBc

No Intersymbol Interference 114 Symbol Interference

112 Symbol lnterference 1 Symbol lnterference

Equalizer Design

Set Data 12 dB Below Full Scale

Figure 3 shows that Rayleigh fading can cause the magnitude of the data to be amplified by 10 dB. To
prevent the sampled representations of the I and Q baseband signals from clipping, the nominal point (0
dB) should be kept at least 10 dB below full scale. For sampled signals, the amount of dynamic range
represented by each bit is 6 dB. A convenient figure to work with for a fade margin is 12 dB, which
corresponds to 2 bits in sampled form.

Software AGC

To maintain maximum resolution in the presence of fading, some mechanism is required to keep the
nominal value of the data at 12 dB below full scale. An RF section may contain an automatic gain control
(AGC) circuit that prevents strong signals from overloading the receiver and boosts weak signals for better
recovery. However, building an AGC with a large amount of dynamic range (-30 to -1 15 dBm) can be
an issue. An alternative to a full-dynamic range hardware AGC is a combination of hardware to attenuate
the large signals and software to boost signals below the desired nominal value.

An algorithm for the software AGC can be based on signal strength measurements of the incoming data.
Often, the software must perform measurements for reporting the received signal strength indication
(RSSI) of the cell to the cellular system. The software AGC could use the RSSI directly or in some
derivative form, but a single measurement would look like:

and the RSSI value would be the weighted average of individual measurements:

RSSI ,,, (n) = Am (n) + (1 -A) RSSI ,, (n- 1)

where h is an exponential weighting factor that is less than 1. The final RSSI report would include the
amount of attenuation provided by the hardware AGC portion, which could simply be a resistive pad
switched in to prevent overloading the AIDS. RSSI,,(n) represents the software scale factor. Ideally

where 12 dB is the fade margin discussed above. So the scale factor will be

An assembly language example is included in the source code. See the Code Availability section on page 187.

Equalization and Estimating Maximum-Effect Points

To recover the maximum-effect points in the presence of ISI, an adaptive equalizer is used in mobile
stations that are compatible with IS-54. The equalizer inverts the distortion of the communications
channel. Amplitude and phase distortion from fading is compensated, and components of previous
symbols are removed. Figure 5 shows a block diagram of a decision-feedback equalizer (DFE). The
received data is square-root raised cosine (SRC) filtered and fed into a feed-forward filter section. In this
example, the feed-forward filter is a linear transversal equalizer (LTE) composed of three taps that are
spaced at 112 symbol, or Tl2. It is well-known [5] that equalizers with taps spaced in fractions of a symbol
perform better than those with taps spaced at the symbol interval. Three taps spaced at TI2 provide the
capability to compensate for up to one symbol of ISI, which is the upper limit specified in IS-54. The
feedback filter contains a single adaptive tap. Previous decisions are filtered by the feedback filter and
subtracted from the output of the feed-forward filter. This result is the estimated maximum-effect point
at time k. The estimate is then fed into a data slicer, which decides which maximum-effect point is being
estimated on the basis of its phase. The error vector is the difference between the estimate and the decision
and drives the filter tap adaptation.

The slicer makes its decision on the basis of the phase of the estimate. Recall that there are two subsets
of maximum-effect points that the encoded sequence alternates between in n14 DQPSK. In both subsets,
the points are offset by 90 degrees. In the case of the subset of quadrant points, the decision regions are

trivial: determine which quadrant the estimate is in from the signs of the real and imaginary components
of the estimate. In the case of the subset of axis points, the decision region boundaries are at odd multiples
of n/4 in phase. However, if the estimates for the subset of axis points were rotated by n/4 in phase, the
decision regions would be the quadrants of the complex plane. In Figure 5, there are two paths into and
out of the slicer. The upper path is for the estimates of axis points, and the lower path is for the estimates
of quadrant points.

For the equalizer to be able to track changes in the communications channel, it must first be trained to the
channel's characteristics. At the beginning of every TDMA slot received by the mobile unit is a 14-symbol,
15-maximum-effect point synchronization word. The mobile unit uses this known sequence of phase
changes to synchronize its receiver to the base station's transmitter. When an arbitrary starting point on
the unit circle is chosen, this known sequence of phase changes can be encoded into a sequence of
maximum-effect points and stored in the memory of the DSP. The stored MEPs drive the error, and the
equalizer taps converge to a state in which the error is minimized; thus, the equalizer adapts to the channel's
characteristics. The equalizer compensates for the phase difference, which can be completely arbitrary,
between the stored MEP sequence and the received one. The taps take on whatever values are required to
produce estimates of the stored MEPs.

Figure 5. Block Diagram of a Decision-Feedback Equalizer

The 'C5x is a fixed-point machine; to prevent the equalizer taps from exceeding 1 .O, it is necessary to scale
the decision points. Since the equalizer taps adapt to the inverse of the channel, an amplification by the
equalizer tap compensates for attenuation of the signal. This is illustrated in Figure 6. Since fading can
attenuate the received signal by 30 dB from its nominal value, the same amount of amplification could be
applied by the equalizer. The desired magnitude for I and Q is 0.25, which is 12 dB below full scale. This
is also the value of the decision used in the feedback path in Figure 5. The decision points must be scaled
by another 30 dB (42 dB altogether). It was verified by simulation that an attenuation of the signal by 30
dB (corresponding to a constant 30-dB fade) produced a main tap magnitude equal to 1.0 when the decision
points were scaled by 42 dB.

ejd4 e-jd4

'(k! T/2 3-Tap (c-c,

LTE
~(kl

4

T, 1 -Tap Word

LTE MEPs
2 A

b(k) = x g . (k) dk-n) - f(k) o(k-1)
n = O

LTE = Linear Transverse Equalizer

r

SRC
Filter

Figure 6. Equalizer Taps Responding to a Fade

Magnitude of a Fade During a TDMA Time in a Slot (dB)

Magnitude of Equalizer Steps

Choosing an Update Algorithm

To track the changing communications channel, the adaptive equalizer uses an algorithm that updates the
taps according to the error signal. Because of the requirement for tracking a fast-fading channel in a
fixed-point implementation, the update algorithm should be chosen carefully.

Table 1 compares the best possible candidates. Using Table 6.8.5 in [I], a complexity comparison can be
made for an equalizer with N 1 = 3 feed-forward taps and N2 = 1 feedback tap. Assuming 4 DSP operations
for a complex multiply and 40 DSP operations for a complex divide provides a comparative figure for the
number of DSP operations required for each algorithm. These DSP operations are in the parentheses in
the middle two columns of the table.

Table 1. Complexity Comparison of Update Algorithms

LMS

Fast Kalman

Conventional Kalman

Square-Root Kalman

Gradient Lattice

RLS Lattice

Number of
Complex

Operations

9

85

58

50

30

54

Number of
DSP

Operations

36

448

304

344

336

432

Number of
Complex
Divisions

0 (0)

3 (120)

2 (80)

4 (160)

6 (240)

6 (240)

Number of
Complex

Multiplications

9 (36)

82 (328)

56 (224)

46 (1 84)

24 (96)

48 (192)

Of the six choices, one must be disqualified, and one will be disqualified. The LMS algorithm, although
overwhelmingly simpler than the others, has insufficient convergence properties (tracking ability) for the
types of channels that must be dealt with. It was included to show that the price to be paid for enough
convergence is an order-of-magnitude increase in complexity. The conventional Kalman is known to have
stability issues [I] and therefore should be used with caution -especially in a fixed-point implementation.
For this discussion it is disqualified, as well. Of the remaining four candidates, two are clearly more
complex for the desired number of taps, so the final choice is between the square-root Kalman and the
gradient lattice. According to [I], the gradient lattice is a suboptimum derivative of the RLS lattice with
reduced complexity and processing requirements. The square-root Kalman, however, maintains the
optimal convergence properties of the conventional Kalman but uses a more stable method for updating
the Kalman gain vector. It seems worthwhile to choose a slightly more complex algorithm that has
significantly better convergence properties.

The list of algorithms in Table 1 is by no means comprehensive. There is a multitude of algorithms to choose
from. This discussion considers only a few well-known and proven options.

Code Availability

The associated program files are available from the Texas Instruments TMS320 Bulletin Board System
(BBS) at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com.

References
1. Proakis, John G., Digital Communications, McGraw-Hill, New York, 1989.

2. Jakes, W.C., et al., Editors, Microwave Mobile Communications, Wiley-Interscience, New York,
1974.

3. Cellular System: Dual-Mode Mobile Station - Base Station Compatibility Standard, IS-54B,
Telecommunications Industry Association, April 1992.

4. TMS320C5.x User's Guide, Texas Instruments, 1993.

5 . Qureshi, S. U. H., "Adaptive Equalization, "Proceedings of the IEEE, Vol. 53, September 1985,
pp. 1349-1387.

Digital Voice Echo Canceler
Implementation on the TMS320C5x

Kevin McCoy
DNA Enterprises

Manswr A. Chishtie
Digital Signal Processing Applications - Semiconductor Group

Texas Instruments Incorporated

Introduction

This voice echo canceler implementation on the TMS320C5x is based on a similar implementation on the
TMS320C2x [I]. This application report outlines the differences between the two implementations and
highlights the specific 'C5x features that support an efficient echo canceler implementation.

This application report extends the 'C2x report with a description of the 'C5x implementation of the
algorithm. It is highly recommended that you read both reports to get complete details on the theory and
the algorithm used for adaptive filtering and echo cancellation. Although the basic algorithm is the same,
the 'C5x implementation is considerably different from that of the 'C2x to take advantage of the 'C5x
architecture. These performance improvement techniques are discussed in detail in this application report.

The hardware platform used for testing the 'C5x echo canceler software consists of a 'C5x software
development system (SWDS) and an analog front end (AFE) board. The SWDS is a plug-in IBM PC AT
card, which is used to debug and run 'C5x code in real time. It has all the necessary hardware hooks to allow
an efficient message-passing scheme between the 'C5x and the host PC. The AFE board acts as an analog
interface to the 'C5x SWDS. It is made up of two codecs, two telephone hybrid transformers, and clock
generation logic for the near-end and the far-end line interfaces.

Although the software is designed to run on an SWDS-AFE platform, very little modification is required
to adapt the program to a different target board1. The current implementation simulates the following
functions in software:

Near-end round-trip delay
Far-end round-trip delay
Near-end echo generation

The near-end round-trip delay directly affects the performance of the echo canceler. This is the time delay
of the tail circuit (see Table 3 for details) and is simulated in software in order to analyze the echo canceler
performance. The far-end round trip delay is the delay of the forward circuit. The echo generation is
implemented in software.

In addition to these simulations, a message-passing scheme is supported by the 'C5x to interface to the host
PC via the SWDS hardware. This allows you to monitor the echo canceler performance in real time.

These features are provided to fine-tune the software performance according to each applications
requirement. They can be turned off by using software switches (see Table 1 on page 197) during assembly
time.

'C5x Device Features Used in This Implementation

The 'C5x architecture is based on the industry-standard TMS320C25 architecture. The 'C5x assembly
language is a superset of the TMS320C25 assembly language. However, the 'C5x has an enhanced
pipelined architecture that allows it to execute instructions at 50 ns or 25 ns - more than twice the speed
of the 'C2x. In addition, the 'C5x has a more powerful set of instructions that allows highly efficient
algorithm implementation. Many of these enhanced features are used in this echo canceler implementation.

The rest of this section highlights various features of the 'C5x architecture that distinguish it from the 'C2x
family. All code examples are taken from the echo canceler software, but the general comments are equally
applicable to any DSP algorithm.

1 Editor's note: This may be necessary since the 'C5x SWDS is no longer available from Texas Instruments Incorporated. An
alternative development platform is the 'C5x evaluation module (EVM).

Dual Mapping of On-Chip Memory
The 'C5x has 1056 words of on-chip dual-access memory, 5 12 words more than the 'C25. While this type
of memory is more efficient to use, it is expensive in terms of silicon real estate. Another type of on-chip
memory available on 'C5x devices is single-access memory. The 'C53 and 'C51 have 3KllK words of
single-access memory, while the 'C50 has 8K words. This memory block can be mapped simultaneously
in program and data spaces. This dual-mapping feature is very useful for adaptive FIR filters, such as the
echo path transversal filter. The multiply/accumulate loops require FIR coefficients in the program space,
but the same coefficient table is also accessed in data space to update the transversal filter coefficients.
Placing this coefficient table in single-access memory and utilizing its dual-mapping feature make the
transversal filter implementation more efficient. Note that the data-move operation (DMOV instruction)
works on the single-access RAM (SARAM) block, as well.

Zero-Overhead Loops
The 'C5x features zero-overhead loops, as opposed to the 3-cycle overhead of the 'C25 BANZ (branch on
AR not zero) loops. This makes 'C5x looped code as efficient as inline implementation. The code in
Example 1 illustrates the use of block repeats in the filter taps update algorithm:

Example 1. Zero-Overhead Loops UPDATE.ASM
- -

lac1 num-a-iter-2
s amm brcr ;no. of iterations
rptb $block-end-1

lacc *, 16, arl ;start of loop
mpya *+,ar2
sach *0- ;end of loop

$block-end:

In the 'C25 implementation, the same algorithm was coded inline.

Dynamic Addressing of Coefficient Tables
The multiply/accumulate instruction (MAC) on 'C25/'C5x devices fetches input samples of an FIR filter
from data memory and takes the filter coefficients from the program memory. This achieves single-cycle,
multiply/accumulate operation by simultaneously fetching two operands from memory. Most 'C25/'C5x
FIR computations are carried out this way. On the 'C25, the coefficient table address can be specified only
in the direct addressing mode. This is adequate for most applications, except where the coefficient table
address is determined in runtime. For such cases, the 'C5x provides a register-indirect mode of addressing
on multiply/accumulate operations.

Example 2. Echo Estimation Routine FIR.ASM

lac1 last-a ;update coefficient
s amm bmar ; table address
lacc one, 14
2 Pr ;clear preg
rPt num-a-l ; repeat

madd *- ;multiply/accumulate
apac ;last product
sach est-echo,l ;save echo estimate

This feature is used in the echo estimation routine, as shown in Example 2. The block-move-address
register (BMAR), a dedicated CPU register, points to the location of the coefficient table in program

memory. This feature is useful when code reuse is a consideration. For the code shown in Example 2, it
is particularly important because the length and the location of the transversal filter coefficients are
determined in runtime.

Use of Nested Loops

Complex applications like voice echo cancellation often need nested loops. For instance, the block update
algorithm for echo filter taps requires two nested loops: an inner loop to compute a time-averaged
correlation error for each coefficient in the block and an outer loop to update the coefficient. This can easily
be accomplished on the 'C5x by nesting a single-instruction repeat (RPT) inside the block-repeat (RPTB)
loop.

Example 3. Coefficient Update Routine TAPINC.ASM

It cunO ;
lar ar2, #incO
rptb Scale-INCs-1 :outer loop

lacc one, 15
mPY *+
rPt #14 ;inner loop

mac punO+l, *+ ;compute error
mar * , ar2
lta cunO
sach *+,O,arl ;save coeff update

$talc-INCs:

When a single-instruction repeat (RPT) loop cannot be used, block-repeat loops can be nested with
delayed-branch loops such as branch-on-AR-not-zero-delayed (BANZD). Up to eight such BANZD loops
can be nested, each using an auxiliary register as the loop counter. In '(22.5 implementation, the same
algorithm is coded in-line.

MaximaIMinima Search

The 'C5x features special instructions to efficiently find minimum (or maximum) value in a data array.
Each element in the array can be 32 or fewer bits wide. A signed comparison is made between the
accumulator and the accumulator buffer, and the smaller (or greater) of the two values updates the
accumulator buffer. This feature is advantageous in the near-end speech detection algorithm.

Example 4. Near-End Speech Detection Routine NESPDET.ASM

lac1 num-m-1 ;
samm brcr ;repeat count
z aP
sacb ;initialize accb for search
rptb $max

lacc *-, O,ar2 ;get partial maxima M(k)'s
sac1 *-,O,arl
crgt ;save largest M(k) in accb

$max :
sac1 max-m ;largest M(k) -> max-m

The code loop shown in Example 4 performs two functions:

It finds the largest far-end speech sample (or its power estimate) from a set of the num-m most
recent samples.

It implements a time window spanning the echo path delay range.

On the TMS320C2x, the same algorithm must be implemented with conditional branches. The built-in
'C5x support for search algorithms generates faster and more elegant code.

Circular Buffers

Another 'C5x advantage over the 'C2x is its support for circular addressing. Two independent circular
buffers of any size are supported by the 'C5x address generation unit. They can be used to implement FIFO
buffers and queues. In this echo canceler application, the two circular buffers are used to hold far-end and
near-end receive samples and implement variable delay for near-to-far and far-to-near signal paths.

Another important use of circular addressing is in FIR filter implementations. The conventional way of
performing FIR computation on 'C2x/'C5x devices is via a multiply/accumulate with data-move (MACD)
operation. In the case of a 'C5x, circular addressing can replace a data-move operation to update filter taps.
This is a faster implementation if the filter taps reside in the on-chip single-access memory or the external
data memory. The echo simulation filter employs this technique, as shown in Example 5.

Example 5. Echo Simulation Filter EFILT.ASM

mar *, ar5 ;
lar ar5,efilt-ptr ;get echo filter taps address
= aP
rPt #(filt-len-1) ;multiply/accumulate

mac echo-filt-end,*+ ; with circular addressing
apac ;add final product
add one, 14 ;round output
sach sim-echo-out,l ;save as Q15 result

Delayed Branches and Conditional Execution

The 'C2x has a three-deep instruction pipeline. This allows it to perform more operations in parallel by
overlapping various phases of instructions. The 'C5x features a four-deep instruction pipeline to attain even
higher performance. Since deeper pipelines take more cycles to flush, the 'C5x supports special types of
branches and calls to avoid this overhead. Normal 'C5x branches take four machine cycles, while a similar
instruction on a 'C2x takes only three cycles. However, all 'C5x instructions that cause a pipeline flush
support a delayed option that reduces the overhead to only two machine cycles. Moreover, in the special
case in which only one or two instructions are skipped over, you can use an even faster instruction, XC
(conditional execute), which takes only one machine cycle.

The code shown in Example 6 illustrates the use of delayed branches and conditional execute instructions.

Example 6. Use of Delayed Branches NESPDET.ASM

bd Schk-hang ;delayed branch
sacl max-m
lacc absyOf ;branch executes here

sub maxm
lar ar1,last-m-l
xc 21gt ;if acc<=O then skip next two

lacc absyOf ; instructions
sacl max-m

lacc num-m- 1
s amm brcr

Barrel Shifters

Both the 'C2x and 'C5x DSP families support a 16-bit input prescalar and an 8-bit output postscalar in
hardware. This is necessary for efficient fractional arithmetic and bit manipulation. In addition to these
barrel-shifters at the input and output paths, the 'C5x family also features a 16-bit right barrel shifter on
the accumulator. This complements left barrel shifting provided by the input prescalar. The code in
Example 7 illustrates the use of barrel shifters.

Example 7. Code Excerpt From MULAW.ASM

lact temp-B2 ;Shift left biased linear into ACC
bsar 16 ;Shift right ACC by 16
add #OEOh
sub tregl14 ;Shift left by 4 and subtract

The lact instruction uses the left barrel shifter to transfer data to the accumulator, and the input shift is
determined by the tregl register. The following instruction, bsar, performs a 16-bit right barrel shift on the
accumulator contents.

Memory-Mapped Registers

Both the 'C2x and the 'C5x have accumulator-based internal architecture. In 'C2x devices, all arithmetic
operations are performed on the accumulator. There is no data path between the accumulator and other CPU
registers, including the auxiliary register set. Therefore, a temporary data memory location must be used
to transfer data between the arithmetic logic unit (ALU) and the address generation unit (AGU).

The 'C5x architecture is considerably enhanced; it provides a direct data path between the accumulator and
the rest of the CPU registers by mapping them into local data memory. It also supports direct
memory-to-register data transfer on all its internal registers. The code in Example 8 illustrates the use of
'C5x memory-mapped registers.

Example 8. Taps Update Routine UPDATE. ASM

update taps:
splk #16, indx ;init. index register
lar ARl,#INCO ;init. aux register 1
lacc ADA0
sub H
sac1 ar 2 ;init. aux register 2
lacc beta-gain ;get variable beta-gain factor
s amm tregl ;init. temp register 1
lac1 num-a-2
s amm brcr ;init. repeat count
lact I ABSY
s amm tregO ;init. temp register 2
mPY *+,ar2
rptb $block-end-1

lacc *, 16, arl
mpya *+,ar2
sach *0-

$block-end

Parallel Logic Unit

The 'C5x bit manipulation unit runs independently from its arithmetic logic unit. It allows logical
operations on any on-chip or off-chip memory location (including memory-mapped registers) without
modifying the accumulator (ACC) or accumulator buffer (ACCB). This feature, in conjunction with the
memory mapping of the CPU registers, provides 'C5x programmers more flexibility to modify auxiliary
registers to implement software queues and FIFOs. Additionally, the read-modify-write operation
performed by the parallel logic unit (PLU) instructions may also be used for semaphore update. The section
of code in Example 9 is taken from the echo canceler program. It services the serial port receive interrupt
by reading the received data, transmitting new data and setting appropriate flags to communicate with the
background program. Notice in particular the use of PLU instructions for setting software flags.

Example 9. Serial Port ISR ECHOISR.ASM

rint-isr:
ldp #DRR-data
smmr drr,#DRR-data ;get serial receive data
lmmr drr,#DXR-data ;send serial transmit data
opl #RXDATA,sp-flag ;mark serial data received
apl #TXDATA,sp flag ;mark serial port data sent
opl #ERINT,intr-flag ;mark rint in intr-flag
reti

Code and Data Requirement

The echo canceler software implementation gives you maximum control over its performance and
behavior. Various system parameters, such as the echo filter length, echo cancellation enableldisable mode,
and filter adaption enableldisable mode, are represented by memory variables rather than by hard-coding
in software. This lets you either:

Modify these parameters in realtime by the use of supervisory software, as illustrated in the
SWDS demo program, or

Set up these parameters in the initialization stage.

Table 1 lists these user-defined system parameters along with their default values. To modify the default
value parameters, edit the echoequ.inc file.

Table 1. User-Defined System Parameters

The control-flags variable is active only when host-comm is set to 1. Edit the echoinit.asm file to modify this memory
variable.

Number

1

2

3

4

5

Variable Name

pd-wait

echo-taps

sim-echo

host-comm

controlflagst

Description

Programldata wait states

Transversal echo filter taps

Simulated echo disabletenable

Host PC communications disablelenable

Bit 0: echo cancellation disablelenable
Bit 1 : residual suppression disablelenable
Bit 2: coeff adaptation disablelenable

Type

const

const

const

const

variable

Default [range]

Oh

512 116-51 21

1 [OII]

1 [Oll]

1 [Oll]
1 [0/1]
1 [0/1]

Table 2 indicates the processor loading and the code size of each software module for a 512-tap
implementation. It also indicates where each module is located in program memory. Most of the
time-critical subroutines are located in the on-chip single-access random-access memory (SARAM). The
auxiliary functions, such as the host PC mailbox, are executed from external memory.

Table 2. Program Module Requirements

t Only for the modules that are in the main cycle. Cycle count given for 512 taps transversal echo filter.
$ ROM = 'C51 on-chip, read-only memory or external memory.

SARAM = 'C51 on-chip, single-access RAM.

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Data Allocation

The 'C5 1 has 1056 words of dual-access and 1024 words of single-access on-chip memory. It also has 8K
words of on-chip, read-only memory. The on-chip data memory is allocated to various modules of the echo
canceler software according to their specific requirements. Table 3 lists the size and the location of various
data variables for a 5 12-tap implementation.

Module
Name

ECHO.ASM

ECHOINIT.ASM

ECHOISR.ASM

CYCLE.ASM

EFILT.ASM

FIR.ASM

RESID.ASM

MULAW.ASM

PCALC.ASM

NESPDET.ASM

0NORM.ASM

TAPINC.ASM

UPDATE.ASM

UTIL.ASM

MAILBOX.ASM

The coefficients of the echo transversal filter are placed in the on-chip, single-access memory because of
its dual-mapping capability. Note that these coefficients are accessed in both program and data spaces by
two different modules.

The 1024 words of dual-access memory are used for data storage. Reference samples of the far-end talker
reside in this memory block. This makes efficient use of multiply-accumulate-with-data-move-type
operations.

Description

Main module - variable declarations.

Initialization module.

Interrupt services routines.

Get new samples. Convert p-law
to linear. Poll host PC mailbox.

AR for the echo simulation. Update
delay buffers.

Estimate echo. Compute error.

Residual error suppressor.

Linear-to-PCM conversion.

Power estimate of y(n) and o(n).

Near-end speech detection.

Output normalization for
coefficient update.

Tap increment.

FIR filter tap update.

Process host PC commands.
Write monitored variables.

Host PC mailbox.

CPU
Cyclest

-
-

17

67

50

546

17

41

39

47

55

791

153

-

-
Total cycles
for 51 2-tap
filter = 1825

Code Size

2

218

56

7 1

21

21

16

28

19

83

32

32

27

233

41

Total code
size = 900

words

Code
Location*

ROM

ROM

ROM

SARAM

SARAM

SARAM

SARAM

SARAM

SARAM

SARAM

ROM

ROM

ROM

ROM

ROM

To simulate delay paths between near-end and far-end speakers, two long buffers of 2K words each are
maintained in external data memory. Another buffer that holds host PC messages resides in external
memory. Since all three buffers are in noncritical paths and would eventually be deleted from the final
implementation, they are placed in external memory.

Table 3. 512-Tap Implementation Data Variables

On-Chip Single-Access Memory: 528 Words

16 words Normalized outputs UnO - Un15

51 2 words Transversal echo filter coefficients A0 - A1 5

On-Chip Dual-Access Memory: 655 Words

62 words System variables

33 words Local maxima M(k) for near-end speech detection

32 words Coefficient increment INC(k)

528 words Reference samples Y(k)

External Data Memory

2304 words Near-to-far sample delay buffer (optional)

2304 words Far-to-near sample delay buffer (optional)

2048 words Message buffer for PC communications (optional)

Code Benchmarks

The two most computationally intensive routines of this echo canceler application are:

The transversal echo filter routine FIR.ASM, and
The mean square error (MSE) computation routine TAPINC. ASM.

The computational requirement for these two routines depends on the length of the echo transversal filter.

Table 4 shows the relationship between the processor loading and the length of the transversal filter. For
a 512-tap filter, the 'C5x takes only 92 microseconds to process each sample. With an input sampling rate
of 128 microseconds, this leaves the processor with ample time for system overhead. In fact, a 50-ns 'C5x
processor can implement about 750 echo filter taps within a 128-microsecond sampling period. In other
words, one 50-ns 'C5x DSP can handle 96 ms of the tail-end circuit delay.

Table 4 shows code benchmarks for a hardware platform that consists of the 'C5 1 software development
system (SWDS) with an analog front end (AFE) board, a zero-wait-state external datalprogram memory,
a 50-ns instruction cycle rate, a 128-ys input sampling period, and PC communication disabled.

Table 4. Code Benchmarks

Echo Canceler Demonstration on a 'C5x SWDS

Number

1

2

3

4

5

6

7

8

The primary hardware platform for testing the 'C5x echo canceler software (for code benchmarks) was a
'C5x SWDS. The AFE board communicates with the 'C5x DSP via its serial port and has codecs and hybrid
transformers for near-end and far-end telephone interfaces. An AFE board schematic is shown in the
appendix of this report.

You can run the demonstration software on any 'C5x SWDS board by downloading the echo.out file to the
board and running the echodemo.exe file on the host PC. To do this, type the following two commands at
the DOS prompt:

Echo Filter Taps

32

48

64

80

96

128

256

51 2

Time Required to Process One Sample

26.0 ps

28.1 ps

30.0 ks

32.4 ~s

34.6 ps

38.9 ps

56.7 ps

91.6 ps

You can control the various system parameters - such as tail-circuit delay, transversal filter taps, echo
cancellation mode, and adaptation mode - in real time by running the echodemo.exe program.

Conclusion

This implementation of a single-channel voice echo canceler on a TMS320C5 1 highlights the powerful and
versatile architecture of that DSP. This particular algorithm was first coded on a TMS32020. Coding the
same algorithm on a TMS320C5 1 shows that the resulting performance improvement is not merely due
to the faster instruction rate on the 'C5x. Performance is improved by more than a factor of two when
enhanced 'C5x architecture is fully utilized. The 'C5x features used in this implementation are discussed
in detail. The processor loading and the code and data size of each software module are listed. Several
auxiliary functions that are used for testing and evaluation purposes are discussed. The details of a
demonstration package that consists of a 'C5 1 SWDS, an analog front-end board, a 'C5x DSP, and PC
software are given.

Acknowledgements

Texas Instruments acknowledges the efforts of the DNA Enterprises' project team: Kevin McCoy, Mark
Sissom, and Paul Kniffen.

Code Availability

The associated program files are available from the Texas Instruments TMS320 Bulletin Board System
(BBS) at (713) 274-2323. Internet users can access the BBS via anonymous ftp at ti.com.

References

1. "Digital Voice Echo Canceler With a TMS32020M, Digital Signal Processing Applications,
Volume 1, Texas Instruments, 1986, pp. 41 5-454.

2. TMS320C5x User S Guide, Texas Instruments, 1991.

3. TMS320C5x SofnYare Development System Technical Reference, Texas Instruments, 1990.

4. TMS320C5x C Source Debugger User S Guide, Texas Instruments, 199 1.

5. TMS320 Fixed-Point DSPAssembly Language Tools User's Guide, Texas Instruments, 1990.

Appendix: Schematic of the Dual-Telephone Interface
for the TMS320C51 SWDS

T I U 1 29C16

+5 V-
IPDN CLK

TMS320C5x
Serial Port

- 5v + -

Far-End Circuit

I 1 1 NOTE: TI-T2 Transformer Specifications

Codec Frame Generator 1. Dual primary, center-tapped secondary

2. Primary inductance = 1 .l HO 1 kHz. 65 mA
3. Saturation current > 70 mA
4. 1 : 1 : 1 : 1 tums ratio
5. Average w~nding resistance = 62.5 R
6. Primary winding resistances should match within
7. Wind 112 secondary first; tape, then wind prima5

bifilar; tape, then wind rest of secondary.
8. Coefficient of coupling (K) >= 0.998
9. Pri-to-pri and pri-to-sec Hipot = 500 V

(This is a singlecoil, hybrid transformer.)

DNA Enterprises. Inc.
Dual-Telephone Interface for the TMS320C5 1 SWDS

Part VII
Speech and Character
Recognition Algorithms

DSP-Based Handprinted
Character Recognition

Alan Josephson
Informaton Technology Group

Texas lnstnrments Incorporated

Introduction

The market for pen-based computers is growing. Pen-based computers include notebook-sized tablets,
pocket organizers, and handheld computers (HHC). Most pen-based computers offer handprinted
character recognition (HCR), and some are beginning to offer cursive handwriting recognition. Most
implementations of pen-based computers with HCR suffer from slow response times and inaccurate
recognition. The HCR algorithm is typically implemented on the CPU of the pen-based computer.

This report describes how to implement HCR for real-time applications. Such applications are found in
a variety of industries, including financial trading, healthcare, and transportation.

Users of handheld computers require fast response and high accuracy recognition rates. To meet these
requirements, the execution of HCR tasks in a handheld computer is shared among a pen-input processor,
a TMS320C5x digital signal processor (DSP) residing on a Q p e I1 PCMCIA-compatible card, and the
main CPU. The input processor digitizes and filters handprinted input written on a resistive pad. The DSP
manages pen-stroke and character libraries. The DSP performs character-based matching by using these
libraries and digitized strokes provided in real-time by the input processor. The DSPprovides the character
string with the best match to the input data, along with a set of possible alternatives, to the main CPU. In
addition, the DSP can handle high-level verification of character recognition, such as constraining the
matching to a dictionary of valid character string inputs. The main CPU handles inking of data to the LCD,
establishing a recognition context, and communicating pen-stroke data to the DSP.

The prototype HHC platform described in this paper was developed in conjunction with Commodity
Exchange, Inc. of New York (COMEX) as a means for traders and brokers to input trades to the exchange
and electronically receive price and trade order information. The HHC platform system can also be used
in other industries that require communicating with pen-input computers and wireless LANs.

The current implementation of HCR is integral to the HHC and runs on an MC68000 processor, along with
other system and application software. This paper shows how a PCMCIA card containing static memory
and a general-purpose DSP can be used to implement HCR in a multiprocessor setting. A Qpe I1
PCMCIA-compatible card containing a TMS320C5x DSP and 25613 bytes of SRAM (referred to as a
DSP/memory card or DSP card) is under development by the Texas Instruments Semiconductor Division
[1,2,3]. The architectural and functional aspects of this card that are relevant to the implementation of HCR
are discussed.

Architecture

The prototype HHC is shown in Figure 1. The processors and I/O devices for implementing HCR are
described in the following paragraphs.

Figure 1. Prototype HHC Platform With Pen lnput

Host Processor
The MC68302 is the main processor used in the HHC. The 68302 is an integrated multiprotocol processor
consisting of an MC68000 core, a system integration block (SIB j, and a communications processor (CP).
The CP is connected to the core through the SIB, not the data bus, and can operate independently of the
core. This feature allows multiple tasks to be implemented in hardware, providing increased system speed
and better power management. The 68302 has the ability to put the core and the CP to sleep independently,
allowing large power savings. The return to a normal operating state is very quick and undetectable by the
user. The MC68000 core is referred to as the hnstprocessol:

lnput Processor
Any standard ball-point pen, pencil, or stylus can be used to enter handprinted input and signatures onto
a resistive, opaque X-Y digitizing pad, located between the LCD and the elastomeric keyboard. An Intel
8051-like Signetics S87C552 microprocessor performs input preprocessing and provides low power

modes of operation used in power management. This processor is awakened through hardware whenever
a key is pressed, the discrete matrix touchscreen is touched, the digitizing pad is touched, or data is received
over its serial line from the host processor. The firmware drives the AID circuitry, which biases the
digitizing pad and gets X-Y and touch-detect readings. Higher level software averages the X-Y points and
reports the filtered strokes (a pen down, followed by a stream of points, followed by a pen up) over the serial
line to the host processor for recognition or for signature compression. As information is sent to the main
processor for recognition andlor storage, it is presented, or inked, on the LCD to provide feedback to the
user. Key presses and touchscreen touches are reported similarly.

DSPIMemory Card
The DSPImemory card can be used either as standard memory or as a multifunction peripheral device. The
HCR (and other) DSP algorithms can be loaded into the card by a host processor in the same way it writes
to any PCMCIA memory. Once the program is loaded, the host can command the DSP to execute the
algorithm as a CP. Among the key features of the DSPImemory card used in this implementation of HCR
are on-board logic to arbitrate the memory bus between the DSP and the host, direct interrupt control and
handshake between the host and DSP, and host control of DSP operating speeds for power management.

System-Level Software

A real-time operating system (RTOS) with facilities for multitasking and interprocess communications
runs on the host. The application program interface (API) implements the application programmers' view
of the operating system. Included in this interface are functions to accept input from the keyboard, the touch
screen, the digitizing pad, or the communications system. Also included are functions to output data to the
liquid crystal display (LCD), to handle communications, to access RAM, and to access the PCMCIA-
compatible card.

The input subsystem routines allow application programmers to manage the input queue that records user
inputs from the touch screen, keyboard, and HCR subsystem. The modularity of the HCR subsystem makes
porting it to the DSPImemory card straightforward. Initialization routines for the HCR subsystem are
available from within applications. Communication of recognition parameters between applications and
the HCR subsystem occurs through APIs that manipulate the recognition context, which is composed of
inking parameters, active model databases, active gesture sets, and active constraint dictionaries. The
HCR subsystem is activated asynchronously when serial data from the digitization subsystem is received.
After processing the digitizer data, the HCR subsystem sends a notification to the application (similar to
those sent for keyboard and touch screen events) that the recognition results are awaiting processing. The
application is then responsible for invoking final translation and constraint of the recognition result through
function calls to the HCR subsystem running on the DSPImemory card.

To conserve power when the HHC is not in use, it can be placed, under software control, into one of two
sleep modes: shallow sleep or deep sleep. In the shallow sleep mode, the processor is active, but some of
the nonessential services have been turned off. The application is unaware of the shallow sleep mode that
is managed by the HHC system software. In the deep sleep mode, almost all services are turned off, the
internal status of the processor is saved, and the HHC uses the minimum power required to wake up
automatically when an interrupt occurs from the keyboard, touch screen, digitizing pad, communications
system, or DSP.

HCR Subsystem Description
The HCR algorithm embodies an operator-trainable stroke-based approach. The operator can enter models
for individual characters (alphabetic and numeric) during interactive training sessions. These models make

up model databases that are employed by the recognition software as a basis for translating the operator's
handwritten input from within applications. As the operator writes on the digitizing pad, strokes are
digitized into a set of discrete points that are used as input to the recognition subsystem. Strokes are thinned
so that not all points are retained; strokes are normalized with respect to a common scaling factor. After
normalization, the stroke is compared to all strokes in the currently active stroke database, and a degree
of match or penalty is determined for each. Once this process has been repeated for all strokes in the current
input, the sequence of strokes is parsed into a set of potential symbol matches, utilizing the models in the
currently active model database as references. As possible recognition results are computed, they are
stored - along with their associated penalties - to be reported to the application. The HCR approach does
not require the operator to write within a specified grid. Spatial separation between characters is not
essential for recognition, and the user may overlap and overwrite characters.

Application-generated contexts allow the recognition software to disambiguate between otherwise
indistinguishable models from different databases (for example, numeric 0, 1, and 5 from alphabetic 0 , I,
and S). Using context-sensitive dictionaries to constrain fields before the recognized result is reported to
the user causes the perceived recognition accuracy to be higher than it would be if only character-based
recognition were being used, and it causes it to be much higher when alphabetic and numeric contexts are
available. Additionally, context provides a means for increasing recognition speed, because the database
of models to be searched is smaller.

HCR Subsystem Implementation

The incremental nature of the HCR algorithm makes it a natural candidate for exploiting the parallelism
offered by the DSP CP. The host processor is responsible for receiving strokes from the input processor,
optionally inking the digitized points to the LCD, performing high-level filtering of the digitized strokes,
and communicating the strokes to the DSP for processing. Additionally, application-level software
running on the host processor communicates contextual recognition parameters and requests for
recognition results to the DSP. The DSP incrementally processes the strokes as they arrive from the host
by forming partial recognition results. Also, the DSP - in response to the host's requests - sets
recognition parameters and generates final translations of pen input on the basis of the recognition
parameters.

Memory Organization of the DSP Card

Figure 2 shows the DSP card's memory map as used by the HCR subsystem. The shared memory is
partitioned into code memory, stroke data (input), recognition results (output), and a workspace for the
HCR subsystem running on the DSP. The arrows in the diagram indicate readlwrite privileges for the host
processor and DSP. This partition of the shared memory is a design choice, based on the readlwrite
privileges. If some segment of the card memory requires write privileges for both the host processor and
DSP, card logic in an onboard FPGNASIC handles this memory contention by giving precedence to the
host.

The DSP code is loaded into the shared card memory by the host during initialization of the HHC. The
host then switches the DSP card from standard mode (in which the DSP is inactive) to smart mode, at which
time the DSP begins execution from the code segment. The DSP initializes variables in its workspace and
enters a processing loop, awaiting commands from the host processor.

Figure 2. DSP Card Memory Organization for HCR

Control Registers

Interprocessor Communication

The host processor and DSP communicate through dedicated 16-bit data, status, and control registers in
the FPGAIASIC on the DSPImemory card (see Figure 2). Read and write access to the DSP data transmit
and DSP data receive registers is enforced by the onboard logic.

b

Host-to-DSP Communication

w

Data Registers

- DSP Data Transmit 4

b DSP Data Receive

The host communicates to the DSP by writing commands to the DSP data receive register. The host has
only write access to this register; any host read from this register causes invalid data to be read. The DSP
has only read access to the DSP data receive register; any DSP write to this register is ignored. A host write
to this register generates an interrupt to the DSP. Similarly, a DSP read from this register generates an
interrupt to the host. The host status register is accessed by the DSP to determine the status of host
communication registers.

Host Status
P

DSP Status

w w

4

w

68000 Host TMS320C5x DSP

t A A A

Shared Memory

Output

Workspace

4

4

b

DSP Recognition Code

Stroke Data
Input

Recognition Results

The DSP recognition code is a stand-alone application that does not run under an operating system. The
top-level DSP recognition code consists of a command processing loop that interprets commands written
to the DSP data receive register. Thus, when a stroke becomes available to the host from the input
processor, it is communicated to the DSP by first copying it to the card's shared memory. The host then
issues a command to the DSP to process the stroke. Commands to initialize and reset HCR parameters are
communicated similarly. Whenever the DSP has no pending commands from the host, it enters its lowest
power mode [4]. Writes to the DSP data receive register awaken the DSP for further processing.

DSP-to-Host Communication

The DSP communicates to the host by writing commands to the host data receive register. The DSP has
only write access to this register; any DSP read from this register causes invalid data to be read. The host
has only read access to the host data receive register; any host write to this register is ignored. A DSP write
to this register generates an interrupt to the host. Similarly, a host read from this register generates an
interrupt to the DSP. The DSP status register is accessed by the host to determine the status of DSP
communication registers.

The RTOS running on the host uses interprocess communication primitives to provide race-free
synchronization and communication mechanisms. The RTOS supports message queues that are not bound
to any task. Tasks may send messages to a queue, and several tasks may request messages from the RTOS.
When the DSP writes to the host data receive register, an interrupt service routine on the host places the
DSP message on the input subsystem queue. This implementation provides a seamless interface between
APIs running on the host processor and the HCR subsystem running on the DSP.

Application Command Protocols

The application command table (ACT) for the HCR subsystem is shown in Table 1. The INITIALIZE,
RESET-HCR, and BUILD-RESULT commands have no parameters and are sent directly to the DSP data
receive register by the host's APIs. The SET-PARMS and PROCESS-STROKE commands are sent after
their parameters have been written to the input section of the shared memory. The DSP sends a
RESULT-READY after it has generated the recognition results and written them to the output section of
the shared memory.

Table 1. Application Command Table for HCR Subsystem

Command Name Host to DSP? Parameters Command ID Function

INITIALIZE True None

RESET-HCR True None

SET-PARMS True Database,
dictionary, # of
return strings

PROCESS-STROKE True Stroke data

BUILD-RESULT True None

RESULT-READY False Recognition
results

00 Initialize variables on
DSP for HCR

0 1 Reset HCR context for
new entry

02 Set HCR parameters

03 Perform incremental
recognition on next
stroke

04 Generate recognition
result(s) based on
parameters

10 Signal that the HCR
results are ready

Results

As of this writing, the implementation of HCR using the DSPImemory card is not yet complete. Porting
of the HCR recognition software to a PC-resident EVM board containing a TMS320C5x DSP and
sufficient memory to emulate the DSPImemory card is in progress. Initial results indicate that the overhead
in transferring data between the two processors is minimal and that a high degree of parallelism is possible.
The final porting of the code depends on availability of the DSPImemory card.

References
1. Pawate, Basavaraj, Frantz, G.A., and Chirayil, Raj, "System Design Using Memory With a

Processor Having Communication With Host Processor", Texas Instruments (patent pending),
1993.

2. Pawate, Basavaraj, Frantz, G.A., and Chirayil, Raj, "System Design Using Memory With a Host
Processor for Activating a CP", Texas Instruments (patent pending), 1993.

3. Chirayil, Raj, and Pawate, Basavaraj, "PCMCIA DSPMemory Card Specification", Texas
Instruments, November, 1992.

4. TMS320C5x User's Guide, Texas Instruments, 1993.

5. Pawate, Raj, "BASAVA Concept", Texas Instruments, November, 1991.

Implementation of an HMM-Based,
Speaker-lndependen t Speech Recognition

System on the TMS320C2x and TMS320C5x

B. I. (Raj) Pawate
Peter 0. Robinson

Speech and Image Understanding Laboratory
Computer Sciences Center

Texas Instruments Incorporated

Abstract

In the years to come, speaker-independent speech recognition (SISR) systems based on digital signal
processors (DSPs) will find their way into a wide variety of military, industrial, and consumer applications.
This paper presents an implementation of a hidden Markov model (HMM) speech recognition system
based on the 16-bit fixed-point TMS320C2x or TMS320C5x DSP from Texas Instruments. It includes a
description of a minimal TMS320C5x-based system and shows how the HMM algorithm and the system
algorithm interact. The report also presents system loading, along with a current list of the speech
templates. In addition, it presents data showing the relative performance of the algorithm in a controlled
environment. A discussion is included on future algorithm enhancements and reduction of the physical
hardware system. The paper concludes with a description of a very large vocabulary SISR system based
on the ~ ~ ~ 3 2 0 k 3 x and TMS320C4x floating-point DSPs.

Background

Prior to the introduction of the HMM word recognizer, speech recognition was based almost entirely on
dynamic time warping (DTW) techniques. These DTW recognizers are limited in that they are speaker
dependent and can operate only on discrete words or phrases (pseudoconnected word recognition). They
employ a traditional bottoms-up approach to recognition in which isolated words or phrases are recognized
by an autonomous or unguided word hypothesizer. The recognition technique employed in DTW is
straightforward. A set of speech templates are maintained in memory for each wordphrase in the
vocabulary. These templates are based on linear predictive coding (LPC) models. As a new word or
phoneme is acquired and placed in the speech queue, its features or characteristics are compared to each
memory-resident template one wordframe at a time. As the acquired speech frame is compared, it is
stretched or compressed in time to optimize the correlation between the memory-resident templates and
the queued speech frame (hence, the term dynamic time warping). As this warping process progresses, the
result of the optimized correlation is logged, and the score is updated. This is repeated for each template
in the current vocabulary list. A process is then run on all the collected scores, yielding a best-guess estimate
or hypothesis of the recognized word. These DTW systems have been implemented on DSP platforms with
a throughput as small as five million instructions per second (MIPS).

The TMS32O-Based HMM Recognizer

The Texas Instruments speaker-independent continuous word recognizer provides a top-down approach
to speech recognition using the continuous-density hidden Markov model. The Markov model (or the
Markovnikov rule) was introduced by a Russian organic chemist, Vladimir Vasilyevich Markovnikov in
1870. HMMs are statistical or stochastic processes, which, when applied to speech recognition, bring
machine-based voice recognizers to new levels of performance. However, this increase in performance has
its price. HMM-based speech recognizers require a digital signal processor, such as the TMS320C25, that
can execute a minimum of 10 MIPS. As this report shows, the improved accuracy and system flexibility
provided by the HMM-based system outweighs the added cost of the 'C25 or 'C5x over the 'Clx (5 MIPS).

The Texas Instruments Speech Research Group in Dallas implemented the HMM-based speech recognizer
described in this paper on a 'C25 in June 1988. This original application, which contained a vocabulary
of 15 words (15 male and 15 female templates), implemented a voice dialer to show proof of concept.
Figure 1 shows the grammar rules or vocabulary flowchart for this application.

Figure 1. Voice Dialer Sentence Hypothesizer Flowchart

Female Templates 7

Number 5551 212
-

2 Seconds
of

Silence

Male Templates A
The HMM voice dialer can currently run on three platforms:

A stand-alone TMS320C25-based voice dialer demonstration box

A custom dual TMS320C25-based development platform named Calypso

The TMS320C5x Evaluation Module (EVM) with analog front-end board

In addition to the 15 words used in the voice dialer application, a total of 49 voice templates (male and
female) are available for a user's unique end application. Table 1 lists the 49-word HMM vocabulary.
Example sentences follow the table.

Table 1. Current HMM Vocabulary (49 Words)

ADD

CALL

DELETE

EMERGENCY

FORWARD

LAST

NOT

PROGRAM

SEND

WAITING

ONE

FIVE

NINE

AREA-CODE

CANCEL

DISABLE

ENABLE

FROM

MAIL-LIST

NUMBER

RECORD

STOP

YES

TWO

SIX

BACK

CONFERENCE

DISTURB

ENTER

HOLD

MESSAGE

OFFICE

REDIAL

TO

ZERO

THREE

SEVEN

BLOCK

CREATE

DO

EXTENSION

HOME

NO

PLAY

REVIEW

TRANSFER

OH

FOUR

EIGHT

Example sentences from the vocabulary include:

Call home

Call office

Call number five five five one two one two send

Call extension two three enter

Delete extension three five enter

Create extension seven seven enter

Disable do not disturb

Disable call waiting

Enable call back

Block last call

Voice-Dialer Performance Testing

In 1990, a test was conducted on the HMM recognizer using the standalone voice-dialer demonstration box.
A total of 2,272 sentences were tested in a closed-set experiment utilizing word templates from the
vocabulary database noted above. Test sentences included the words call, oftice, home, area-code, numbel;
extension, entel; and cancel, in addition to the normal digits. Speed-dialed sentences included the words
home, oftice, and emergency.

Sentence Recognition Performance

Total number of sentences 2,272
Total sentence errors 133 (5.9%)

With substitutions 73 (3.2%)
With deletions 4 1 (1.8%)
With insertions 19 (0.8%)

Word Recognition Performance

Total number of words 12,785
Total word errors 148 (1.2%)

With substitutions 84 (0.7%)
With deletions 45 (0.4%)
With insertions 19 (0.1 %)

System Considerations
The system considerations or desirable objectives for a recognizer can be broken into two categories -
functional (or ergonomic) and technical:

Functional Requirements
Speaker-independent recognition (no training required)

Recognition of connected or continuous words (natural speech)

High level of accuracy

Ability to work on a wide cross section of dialects

Reasonable size of vocabulary

Affordability

The functional criteria are straightforward, and the system should perform well enough to make it usable
in a quiet environment by a majority of the population. Current low-cost, machine-based recognizers are
not sufficiently robust to recognize all people at all times. Therefore, it is important to set limits on the level
of performance. These limits or restrictions can be determined only through experimentation and test
marketing.

Technical Requirements

The technical objectives are much easier to define because they are price- and performance-driven.

Utilize as little memory as possible

Work on a 16-bit fixed-point rnicrocontroller/DSP

Incorporate minimal chip count for a small system form factor

Use single voltage and low power for battery operation

Things to Come

As the technology progresses, speech recognition will find its way into a wider base of applications. These
developments are currently under way at Texas Instruments:

Adaptation of a microphone array for acoustic beam forming

Active creation or modeling of background noise for noise templates

Speaker-adaptive speech recognition

A mix of speaker-dependent and speaker-independent recognition

Each of the listed techniques may or may not increase the perceived performance. However, they all show
promise. The hardest problem to overcome is background noise management, or the art of listening in the
presence of noise. Noise management algorithms require an extensive amount of processing power to
implement. As an example, adaptive noise cancellation deals with the problem of removing correlated
noise (that is, noise that has some redundancy associated with it). This process requires large amounts of
data memory, and, as noted, it is computationally intensive. Another technique that shows promise is the
use of a microphone array. The array can focus or listen in a specific direction while subtracting the noise
in all other directions. Another noise-related enhancement is the real-time creation of a template that
matches the current background noise. This technique tries to cancel noise by ignoring it; hence, if the noise
is known, a null set is returned when the noise is detected.

In addition to enhancing noise performance, it is also desirable to increase the flexibility of the
machine-based recognizer. One technique currently under development at Texas Instruments is the
inclusion of a speaker-adaptive algorithm. In this algorithm, the SISR routine comes with a set of
general-purpose RAM-based templates that are initialized during runtime from some nonvolatile storage
media. As a user interfaces with the machine, the machine modifies or optimizes the templates for that user.
This technique is useful when there is only one user per session, such as with a PC-based SISR system.

In the area of speaker-dependent and speaker-independent recognition, a provision will be made so that a
user can supplement the existing speech library with user-recorded templates, such as a trade or personal
name: for example, CALL JIM.

Example Platform

The current fixed-point HMM recognizer, running the voice dialer vocabulary shown in Figure 1, requires
a little over 6K words of program and around 40K words of data memory. Table 2 breaks out memory
loading on a module-by-module basis and reflects performance on a 'C5x platform running at 20 MIPS.

Table 2. HMM Processor Loading on a TMS320CSx

Program
Data Memory Memory CPU Loading

Module (Words) (Words) at 20 MIPS

Feature Extractor 5K 1.8K 7%

Compute Word 16K + 0.75Wword (est.) 0.6K 2 1 O/O

Compute Sentence

HMM Executive

Initialization and I10 0.1 K 0.5K 2%

Totals 26.2K + Compute Word Templates 5.9K 49%

Given the total system memory requirements, this algorithm could be packaged in a single 'C53 with one
external AID converter and two external 70-11s 32K-byte x 8-bit SRAMs. Note that the entire program
memory (5.9K words) can reside in ROM. However, all data memory except the compute word templates
(0.75K bytes x 16 bits per word) must be of the read-write type.

Figure 2. A Minimal TMS320C53 HMM System

TMS320C53 10-Bit, 125-ps AID Converter

TMS320C53

(One Wait-State

32K-Byte 32K-Byte I
SRAM SRAM

x 8-Bit

RAM)

The system shown in Figure 2 provides 16K words of program ROM and up to 36K words of data RAM
(it is assumed that there is a host interface for template upload; if not, an additional 1M words of ROM is
needed). Further integration is possible with Texas Instruments customized DSP (cDSP) devices. A cDSP
implementation will reduce this design to two chips: a monolithic DSP, including an AID converter with
system interface logic, and an external 70-11s 32K-byte x 16-bit SRAM (112M word SRAM).

How the Texas Instruments HMM Implementation Works

The Texas Instruments HMM speech recognizer consists of three computational processes running
together: a feature extractor, a word hypothesizer, and a sentence hypothesizer. The feature extractor, as
its name implies, reduces the continuous speech to a series of 20-ms frames or states whose features are
reduced to a finite feature set called a generalized set feature, or GSF. The HMM processes compute word
and compute sentence guide the recognition - first at the sentence level, then at the word level. These three
processes interact so that the feature extractor feeds the word hypothesizer, which is no longer autonomous,
but guided by a sentence hypothesizer. Hence, recognition is now accomplished on a state-by-state basis.

The HMM processes, at any level, can be expressed in terms of mathematical probabilities as the likelihood
that one state follows another. If the vocabulary is known and the sentence structure is known and finite,
then it is a simple process to predict the next state, given the present and past states. This is done by scoring
frames of extracted features along paths that terminate at unique solution end points. Hence, paths scored

at the state level point to word level, which points to sentence-level solution sets. All along the way,
probabilities are calculated and assigned in guiding the process.

Figure 3 shows graphically how the HMM word hypothesizer works. Within the voice dialer system, after
the word CALL is recognized, the sentence hypothesizer has only two paths from which to select: HOME
or OFFICE. The lower portion of Figure 3 shows the path selection resulting in OFFICE.

Figure 3. Example of an HMM Flow

Path to Next State

State Feedback
Path for Same 7

Ongoing \
Sound Type

Represents

of Speech
State 1 State 2 State 3 State 4

The Initial The " F The "I" The "S"
"0" Sound Sound Sound

OFFICE
Figure 4 on page 222 shows how this application of the hidden Markov model continuous word recognizer
is implemented on the 'C2x or 'C5x. The speech data flows through the model from left to right, while the
recognition is driven from right to left.

The process is started and sustained as follows. Time samples, which are taken every 125 ps, are queued
in the pre-emphasis digitized speech sample buffer (PDSBUF). These samples are then operated upon by
the feature extractor on a frame-by-frame basis (a frame is equal to 160 samples). The feature extractor
interfaces to five data structures:

The LPC filter coefficient table, or rhosmp table, as noted in Figure 4

The pre-emphasis data structure buffer

The word models

The word model table

The generalized set features buffer (GSFBUF)

These data structures and their contents are discussed on the following pages. In general, the feature
extractor performs two functions:

1. It reduces a frame of speech data to a finite data set that describes the speech type. This reduced
data is called a state, which is the smallest unit of time in the algorithm (20 ms).

2. Next, it expresses the state so it can be approximated by a Gaussian distribution.

Figure 4. Block Diagram of the HHM Recognizer

GV$DNE
rhosmp Table

GV$DNA GV$DNA
Word Models Word Model

From CODEC
125 ps

PCMINT.ASM

HMMWH.ASM
COMPWD.ASM COMPSN.ASM

Samples Result
per Frame Buffer

FETCHS.ASM
Pre-Emphasized Generalized Word Scoring

Digitized Set Feature Data Buffer
S ~ e e c h Buffer

Once a frame of speech is processed by the feature extractor, the results are queued in the GSFBUE At this
point, the 160-element frame has been reduced to a 14-element state vector in the GSFBUF. These 14
memory elements contain the following information:

Frame energy

Inner product

10 principal feature vectors (PFVs), PFVl through PFVlO

Utterance flag (voiced or unvoiced speech)

Ongoing-word flag (still in same utterance)

Once a new frame is added to the GSFBUF, the HMM process takes over (compute word and compute
sentence). The function of the HMM is to present a hypothesis on an optimal path for the frame. Hence,
the contents of the GSFBUF are continuously being interrogated by the word hypothesizer to determine
the best path score to a unique end point (word), given the current state and previous states observed. In
addition to the RAM-based buffers, there are three ROM data structures that the feature extractor accesses.
The rhosmp table contains all the coefficients used in the various data reduction routines within the feature
extractor, the 14 5-tap filters, and the LPC-10 coefficients.

Figure 5. The Feature Extractor

Samples from AID It 20 ms -7

PDSBUF I
LPC-Model-Based Spectral
Analyzer, 14 Mel-Spaced I Filter Banks t

I Transformation
Function

Next, the word model (WRDMDL) data structure contains all the word model templates in the vocabulary.
This buffer is typically the largest memory array within the recognizer. The word hypothesizer indexes into
this data structure via the word model table (WDLTBL). This table contains the starting address, length,
and word ID for each word model. As noted above, extracted features or states are queued in the GSFBUF.
They are correlated against the valid word models, as determined by the word and sentence hypothesizer
for that state.

Once a word is processed, all associated state vectors are removed from the GSFBUF and transferred to
a slot of a buffer in memory called the word scoring data buffer (WSDBUF). Each slot in the WSDBUF
stores the following:

Level index - sentence-level, word-level, or states

Model index - current index pointer into the word model data structure

State index - what index within the model

Path-scr - best-path score for the current frame

Path-ptr - scoring data structure (SDS) index of the previous frame in best path

Time - input frame time index

Last-time - time index of last path through this point

Next-state - SDS index of next state for this model

Next-word - SDS index of next word

The data is now reduced from 160 words (PDSBUF) to 14 words (GSFBUF) and to a 9-word WDS buffer.
However, as multiple state vectors were required for each word in the GSFBUF, multiple WDSBUF frames
are needed for best path determination, resulting sometimes in an increase in total memory requirement
to sustain the HMM process. The final phase in the HMM process is the reduction and subsequent linking
of the WSDBUF vectors (based on their path score) so that an optimal path vector set remains. This vector
set points to a unique word ID determined by the read-only sentence model (SENMDL) data structure. This
array maps vocabulary words to model IDS within the sentence IDS or compute sentence, in conjunction
with the head reference array structure (HDREFA). This read-only array maps a vocabulary word ID to its
first model ID. The subsequent fields in the HDREFA model table are used to link multiple models for a
given word ID when that word ID is used more then once in a sentence model. With the IDS known, the
word IDS are passed to the COMBUF, where the host system reads the results. Hence, the COMBUF
contains the recognized words that are to be returned to the host. The COMBUF is organized as follows:

ID of the recognized word model

The error (32 bits) in the word model

Frame index of the word model's beginning

Frame index of the word model's ending

Frame index at which the word model was created

Fixed Point Versus Floatlng Polnt

Thus far, the discussion has focused on implementing the HMM algorithm on a fixed-point DSP. A
floating-point processor such as the TMS320C3x, with its vast 16M-word address range, DMA controller,
and inherent floating-point attributes, makes coefficient representation a nonissue. The elimination of
numerical concerns can significantly reduce development time, but this is not necessary for implementing
the HMM algorithm. As shown, a fixed-point processor performs the algorithm equally well and can
significantly reduce system cost. However, executing a fixed-point system requires a thorough
understanding of the complex numerical issues. Typical fractional variables, such as the features used to
represent the acoustic data (GSFBUF), are represented on a fixed-point DSP by using a Qd, format. With
this format, the 16-bit 2s-complement field is evaluated with a sign bit, n integer bits, and 15-n fractional
bits.

Figure 6. Example of Q 4/16 Notation

-211 210 29 22 21 20 2-1 2-2 2-3 2'1

Sign Bit Binary Point

Figure 6 shows the dynamic range of a Q4lI6 number is: 211 - 2-4 = 2047.9375 to -211 = -2048, where a
Q15/16 number would range from 2O - 2-15 = 0.99996948 to -2O = -1.

Table 3 shows several examples of Qd, notation, as used in the implementation of the fixed-point Texas
Instruments HMM recognizer.

Table 3. Examples of Qntm Notations (Fixed-Point Representation)

variable Qd,,, Notation

Feature vector Q4116

Cumulative pathscores Q15/16

Log of transition probabilities Q1 511 6

Log of observation probability Q15116

As noted, a fixed-point DSP can reduce system cost. However, in SISR systems, size of vocabulary is
all-important. SISRs need a floating-point system, not only for its ability to represent values in
floating-point format, but also for its memory reach. The 'C2x and 'C5x can access only 64K words of
linear data memory, while the 'C3x can access 16M words, and the 'C4x 4G words. The size of the
vocabulary is limited only by processing power, as opposed to accessible system memory. To implement
a very large vocabulary recognition system via the HMM technique presented here, the following must be
accomplished.

The feature extractor must be improved to increase its granularity and to make it more robust.
As more and more words are added to the vocabulary data base, it becomes increasingly more
difficult to distinguish similar sounding words.
A sentence hypothesizer must be developed that can track and predict words according to
grammar rules for the English language. In addition, the sentence hypothesizer must be adaptive
in that it must be able to learn user-specific grammar rules (slang).

A word hypothesizer must be developed that is speaker adaptive (work ongoing) and allows the
addition of user-defined vocabulary (again, work ongoing).

A technique must be developed for creating templates from text-based descriptions. Optimally,
these descripters should be based on a published standard, such as the symbols used in the
respelling for pronunciation, as found in dictionary pronounciation guides.

Example: elephant -('&'a -fa nt)

Figure 7 shows a very large vocabulary SISR system based on the 'C4x parallel processor development
system (PPDS).

Figure 7. SISR System for Very Large Vocabulary

Feature Extractor Sentence Hypothesizer

64K Words of Local Memory 64K Words of Local Memory

Word Hypothesizer
64K Words of Local Memo1

The feature extractor, compute sentence, and word hypothesizer are distributed over the four 'C40s. The
word hypothesizer uses two 'C40s because it is the most computationally intensive task. The feature
extractor feeds output (frame or state data) to the two word hypothesizers via two 8-bit parallel ports. In
addition, the sentence hypothesizer feeds both word hypothesizers, which, in turn, feed their resuits back
to cornpute sentence. Although the above system has not been implemented. it demonstrates a logical
progression of the technology.

Conclusion
In summary, one TMS320C53 DSP can implement a robust HMM speaker-independent
speech-recognition system with just under 50% processor loading. This. with future enhancements to the
existing HMM SISR algorithm and hardware systems, rnakes a single-chip DSP-based recognizer in a
noisy environment a reality. This paper discusses the system resource requirements, vocabulary flexibility.
and possible future enhancements. The data presented shows how a fixed-point processor is ideal for small

vocabulary systems in which expense and power are a concern.The paper also shows how this HMM-based
algorithm can be adapted to a floating-point processor, allowing for a very large vocabulary system.

Automated Dialing of
Cellular Telephones

Using Speech Recognition

Frank Henry Dearden 111
Voice Control Systems, Incorporated

Introduction

The cellular telephone industry has experienced tremendous growth since its beginning more than ten years
ago. What was once considered to be a toy for high-profile executives has now become an integral
communications tool for over 14 million subscribers in the U.S. alone. Growth rates are expected to
accelerate during the next few years.

Automated speech recognition (ASR) technology has been a bedfellow of cellular telephone technology
for many years. Most of the large cellular subscriber unit manufacturers have developed their own ASR
systems to facilitate hands-free dialing. The benefits of combining these two technologies are obvious: the
less time and focus a driver gives to placing a call, the more attentive he is to operating the vehicle.
Hands-free kits that include a far-talk microphone and speaker are now required by law in some European
countries for conversing once a call is connected. Various states are currently considering similar
requirements. Similarly, requirements for hands-free dialing capability via speech recognition are not too
far off.

This paper explains how ASR-enabled dialing capability can be implemented with DSP technology from
Texas Instruments. Speech recognition technology has never been as accurate, user-friendly, and
inexpensive as it is today, or as easy to integrate into state-of-the-art cellular subscriber systems.

The Technology

Most of the past and existing ASR units on the market are limited to what is known as speaker-dependent
(SD) technology. This technology has exhibited some rather fundamental performance limitations. SD
systems work by comparing a whole word input with a user-supplied template. Templates are developed
by each user during a rather cumbersome training exercise, which usually takes place in a quiet, stationary
environment. Since the systems are used in a moving car environment, the increase in background noise,
coupled with a user's inflection change (people usually shout slightly, and unconsciously, when a car is in
motion) confuse most SD systems. Accuracy rates are typically less than 90%.

Speaker-dependent ASR systems are steadily being replaced with speaker-independent (SI) systems.
SI-capable systems approach the recognition problem in a fundamentally different manner than SD-only
systems. Once an input command is captured and digitized, an SI system will parse it into phonetic-like
pieces, or features. These speech features are then compared with supplied target data, not with templates
supplied by the user.

The training procedure for a speaker-independent recognizer is both processing and data intensive. Speech
variations due to sex, age, accent, and speaking habits must be considered, along with the great variety of
noise sources, internal and external to the car, that have a tremendous effect on the signal-to-noise ratio.
This implies that an application-specific speech data base is required for the vocabulary training process.
Consequently, each SI vocabulary is essentially hand-crafted for the particular word list and the
environment of use. The diversity of the training data helps account for the robustness of the resultant
recognizer in the presence of real users and all types of automobile noise.

Usually, speech-independent reference data is derived from a large data base of speech tokens collected
inside several cars, from hundreds of speakers, over a variety of road conditions, and with high-quality
digital recording equipment. The computer-controlled recording equipment has a display screen that
automatically prompts the donor to speak through a given vocabulary. The incoming speech sample is
transduced by a noise-canceling microphone placed on the windshield and is recorded on a remotely
controlled digital audio tape (DAT).

The result is a scheme that is extremely robust. Matching pieces of sound to feature templates derived from
rigorously collected data reduces the amount of computational power required and is more forgiving of
inflection change than an SD scheme. For example, a cold will make John sound less like John specifically,
but his speech will continue to exhibit feature characteristics consistent with the statistical samples derived
from the database. Additionally, technologists at Voice Control Systems Incorporated (VCS) have done
empirical analysis on SI feature recognition and have even identified some features that occur often but
are irrelevant to recognition. The complexity of the task can be reduced and the odds of a successful
recognition increased if some of these redundant features are disregarded.

The Human Interface

All recognition systems consist of two basic components: the core recognition engine and the human
interface. The adage "you're only as good as your presentation" is very apropos when designing ASR
systems. Technologists tend to devote most of their time to enhancing a system's raw recognition power,
bandwidth, and memory allocation, etc. This is all well and good. Marketers however, should make sure
that the interface gets an equal amount of attention.

Besides high accuracy, the major benefit of a speaker-independent capable system is its intuitive,
user-friendly presentation. Acceptance by the user is critical, especially during the first use. The system
should prompt the user with high-quality, stored human speech and should respond quickly to each input.
The result should be a semiconversational experience, such as the following (the user input is in bold
CAPITALS and the response is in lowercase):

"VOICE CONTROL"
"ready"

"CALL"
"calling?"

"OFFICE"
"calling office, correct?"

"YES"
"dialing ..."

In this example, the user accesses a memory location by using one of many possible predetermined name
tags (for example, office, home, school, information, doctor, etc.).

A user should also be able to place a random phone call by using a speaker-independent digit dialing
sequence, like this:

"DIAL"
"phone number, please"

"THREE"
[beep, display 3]

"SEVEN"
[beep, display 7]

etc.
"VERIFY"

"three, seven, (etc.)"
"SEND"

"dialing ..."

Figure 1 shows a flowchart, or decision tree, of a well-tested human interface.

Figure 1. Flow Diagram of Human Interface
TO START, SAY

"&DIGIT CODE"
or press the END button

TO
ANSWER

INCOMING "ready" FOR SINGLE WORD OR
CALL DIGIT DIALING MEMORY LOCATION DIALING

4 4 4
Phone rings
7

"DIAL" FOR LAST "CALL" "DIRECTORY"
I I 1 4 NUMBER DIALING

NOTE: User input is in bold CAPITALS, the response is in lowercase, and directions are in italics.

1 1 4 7 " c a l ' i n g s 7 "name please"
Wait for the "phone number
ring to stop please" Say one Say the 4 name

4 4
Pause for Say the digits, "dialing"

4
a moment one at a time I "HOME" repeated

4 4 "OFFICE"
Before phone After !he last "SECRETARY"
rings again, d~glt, say

S Y "VERIFY" "FRIEND"
4 4 "calling memory -" "WORK"

"SEND Number is repeated

4 4
Conneed to "siND" calling "

caller
Call in progress

'Dialing"

Note that a system can be both speaker-independent capable and speaker-dependent capable. SD
technology allows a user to assign personal name tags to memory locations in addition to the SI locations
mentioned above. Depending on the memory available, a user can program phone numbers into memory
locations labeled "John Smith", "Fred's Office", "Pizza", etc. For the greatest recognition accuracy, it is
best to limit the number of customizable name tags to about ten. VCS uses its feature-matching algorithm
for SD comparisons as well as for SI comparisons, resulting in high accuracy rates.

4
Number is dialed

Call in progress

The Implementation

"VERIFY" "SEND

4
Stored number is

repeated

4
"SEND" .

Number is dialed

VCS has focused solely on developing ASR technology for the past 14 years. Most of VCS's more than
90,000 fielded systems are multichannel telephone network-based installations, which allow random

Call in progress
I v C

To hang up the
phone, say

"3 DIGIT CODE"
or press the END bunon

callers to utilize voice mail or other interactive response functions without the need for touch-tone input.
The recognition algorithms in these applications are handled by dedicated TI DSP hardware.

VCS began to migrate its ASR expertise into single-channel applications about four years ago. The goal
was to maintain high functionality while minimizing hardware cost and space requirements. These first
products used custom interface circuitry, standard X86 microprocessors, a CODEC, and memory for the
core recognition hardware. The custom chip has been redesigned to reduce cost for the recognition core
to about $30 in quantities of 10,000. Manufacturing tooling, testing, packaging, and labor expenses can
easily lead to a total cost per unit of twice this amount. Although the circuit can be made quite small,
adequate space must be allowed in a transceiver unit, a 3-watt booster, an external enclosure, or even within
a handset cradle. Building this chipset directly into a portable cellular telephone remains impractical at this
time.

ASR can also be used with digital cellular phones because VCS code can take advantage of the hardware
already resident within the handset. This hardware includes a CODEC, memory, and digital signal
processing capability. Consequently, adding ASR code may require some additional memory capacity but
does not require the design and manufacture of an entire circuit board. The total cost is greately reduced-
from about $60 to about $15-which includes additional memory and software licensing.

Since VCS's ASR code uses only a small amount of DSP bandwidth, the cellular telephone can execute
recognition operations in parallel with being enabled for incoming calls. For example, our discrete
speaker-independent and speaker-dependent capability utilizes about 25% of the bandwidth for one
channel of recognition on a TMS320C25 operating at 40 MHz. Additionally, the ASR code does not
compete with the digitization and companding exercises undertaken during a conversation, because the
recognition task for dialing precedes the actual placement of a call.

In this scheme, the cellular telephone task master communicates with VCS ASR object code via
applications programming interface (API) commands. This involves a reasonable level of integration, but
the end result is the lowest incremental cost option for adding ASR to a cellular telephone. An API for the
Texas Instruments TMS320C2x DSPs can be acquired directly from VCS.

Accuracy

VCS has designed a tape test exercise to systematically determine the recognition accuracies of a newly
designed voice recognition unit (VRU); the procedures for quantifying the performance of
speaker-independent and speaker-dependent commands are different. A properly designed VRU will
utilize these two technologies to maximize the acceptability of the system by the operator.

Tape testing is conducted under laboratory conditions and with a direct audio path between the tape and
the VRU. The total number of SI commands a system is capable of recognizing is simply a function of
available memory. However, at any given time, only a specific subset of the total SI vocabulary should be
active. In general, each subvocabulary should be limited to about 12 elements, even though larger
subvocabularies are possible. Smaller subvocabularies maximize the performance of the technology and
minimize operator choice and confusion. Each speaker-independent subvocabulary (that is, each path in
the tree) should be tested.

The test data includes 50 speakers, of which half are male and half are female. The data is obtained from
a data collection of every recognizable word in the vocabulary, as described above. These data are reserved
for testing purposes only and are not to be used to train the VRU.

Each response is recorded as the source tape is played. Twice, the tape plays each person speaking the entire
speaker-independent vocabulary, divided into the designated subvocabularies. The expected error rates for
VCS speaker-independent technology are:

Average rejection error rate < 3.0%

Average substitution error rate < 1.5%

A rejection error occurs when the system rejects a valid word input on the basis of insufficient class
distinction. A substitution error occurs when the system substitutes another word from the active
vocabulary in response to a valid word input. On occasion (less than 1 % of the time), the system may not
respond to a spoken input, because the word was not spoken loud enough. These cases should be ignored
when the rejection and substitution error rates are computed.

Softening the impact of an error is the job of the user-friendly interface. For example, if the VRU responds
with a polite "pardon?" following a rejection error, most people will patiently repeat the input (at least
once) and enunciate a bit more clearly. The system typically accepts the next attempt, and the user proceeds,
sometimes unaware that an error has occurred. For this reason, an SI rejection error rate under 4% is
perfectly acceptable for most users.

VCS systems have the capability to handle at least one SD vocabulary, although with enough memory, more
are possible. However, only one vocabulary should be active at any given time. During testing, this
speaker-dependent memory should initially be cleared. A representative group of ten people, five male and
five female, should participate, with a minimum of three passes. Words not easily confused should be used
for this test.

home office Steve Bob Mary Jones

Sears Jill Miller weather voice mail John Smith

Each member of the group then rotates through the above list ten times, trying to recall the correct
command. On average, the expected substitution error rates for VCS speaker-dependent vocabularies are
less than 5%. SD vocabularies are not prone to rejection errors.

It is extremely difficult to combine technologies, (that is, to have a speaker-independent vocabulary
simultaneously active with a speaker-dependent vocabulary). Situations like this should be avoided, if for
no other reason than to minimize the confusion of the operator.

Code Availability

The associated software is available for licensing from Voice Control Systems, 14140 Midway Road,
Dallas, Texas 75244. Relevant data sheets are also included in the TMS320 SofnYare Cooperative Data
Sheet Foldel; Texas Instruments literature number SPRT 1 1 1.

Summary

With a PC, multimedia hardware, and a relevant technical paper in the public domain, an engineer can
design a reasonable speaker-dependent ASR system. The accuracy is usually in the mid-80% range, as long
as the environment is quiet. Improving this capability to handle speaker-independent input, achieve a 97%+
accuracy in noisy environments, and cost as little as $15 per unit is quite another challenge.

VCS has worked for more than a decade in tedious research and testing to incrementally improve its
technology to these levels. It is predicted that the features and benefits offered by ASR will greatly
influence subscriber unit purchases.

Part Vlll
System Design Considerations

The PCMCIA DSP Card:
An All-in-One Communications System

Raj Chirayil
Digihl Signal Processing Applications - Semiconductor Group

Texas Instruments Incorporated

Introduction

With the advent of subnotebook computers and personal digital assistants (PDA), there is an ever
increasing need for a universal communications engine that is compact, simple to use, and dynamically
configurable to suit various operating environments. In the desktop computer world, there is rarely a need
for portability, whereas in the world of PDAs, portability is everything. This includes not only the computer
itself but also any peripherals that go with it. The Personal Computer Memory Card Interface Association
(PCMCIA) standard has made a significant contribution toward meeting this requirement.

Figure 1. DSP Card Block Diagram

Wireless
Modem i

PCMCIA
DSP Card

Algorithm
Development
and Debug

DSP Emulator I
All of the PCMCIA cards available today are single-function products and lack the flexibility to be
dynamically reconfigured to support multiple applications. The PCMCIA DSP card described here was
defined to be used by the host CPUs as a generic coprocessor or as a storage device. For larger data storage
applications, the on-board SRAM can be replaced by lower cost, low-power DRAM devices. However,
advanced digital signal processing applications such as V.Fast modems and digital cellular phones require
higher speed SRAMs to allow full-speed DSP operation. When appropriate algorithms are loaded, the host
can transfer data to the on-board memory and command the DSP to perfom specific tasks, such as
handwriting recognition, image or voice data compression, or music synthesis. An external analog
front-end (AFE) card can be connected to the DSP card if the application requires external analog
inputloutput capability.

The architecture and design described here allow users to configure the card as a datalfax modem,
speakerphone, telephone answering machine, note taker, character recognition system, or business audio
card by merely downloading the appropriate DSP algorithm to the card. Replacing the wireline telephone

interface circuit on the AFE card with an RF circuit and antenna allows the same DSP card to support
wireless data or voice communications.

A key requirement for any portable system is low power consumption. This DSP card uses a TMS320C5 1
DSP, which is ideal for the PCMCIA application because of its very low power consumption, high MIPS
rate, and very low cost. Another important system requirement for a portable multifunction DSP card is
the ability to provide processing power on demand. A card running a simple speech compression algorithm
for a note taker may need less than 5 MIPS, whereas a voice-over-data system running a V.Fast or V.32bis
modem and higher quality speech compression algorithm may need 40 MIPS or more. Because of the
flexibility of the C5x DSP's clock input scheme, this design allows the host PC to configure the DSP to
run faster or slower via s/w commands.

System Architecture

The DSP card system architecture is defined so that any algorithm developed for a particular DSP could
be run on non-PCMCIA platforms, provided that particular DSP is available. The host system can treat the
DSP card as a programmable function coprocessor. The system applications software needs only to know
which DSP a particular algorithm is developed for. This allows the DSP card system to be integrated onto
a notebook PC or PDA motherboard by merely replacing the PCMCIA interface with the appropriate host
system interface.

The PCMCIA interface logic and additional logic needed for the communications and control are
implemented in less than 5,000 gates in an FPGA. For highly integrated systems and motherboard
applications, these functions can be easily integrated with the DSP as a single device through TI'S TEC320
cDSP approach. The hardware- and host-independent architecture supports a WindowsTM 1 application,
using the DSP Resource Manager to run the same application and DSP algorithm on multiple platforms
and hosts.

The architecture defines any host memory provided on the card to be shared between the host PC and the
local DSP. This eliminates data bandwidth limitations and facilitates fast block transfer of data or
downloading of DSP algorithms. Because of this dynamic algorithm loading capability, the host can treat
the on-board DSP as a programmable function coprocessor. A real-time memory paging scheme makes it
possible to load different application algorithms into different pages for fast reconfiguration and task
switching.

The on-board FPGA arbitrates any conflicts for access of shared memory between the host PC and the DSP,
with the host access having higher priority. The FPGA also implements all necessary host system interface
and control logic. Several dedicated communication registers are provided in the FPGA to allow the host
PC and the DSP to communicate without interrupting DSP operation. Buffered registers are provided in
the FPGA for the required programmable bit YO.

The PCMCIA DSP card interfaces to the host as a PCMCIA memory card and an I/0 card. The PCMCIA
specification supports up to 64MB of PCMCIA common memory in addition to a separate attribute
memory space. For a 16-bit fixed-point DSP such as the TMS320C5x, this translates into 32M (16-bit)
words of external prograddata space. The attribute memory can be used by the DSP as 32M (8-bit) bytes
of global data space. Both memories must obviously be paged by a DSP with only a 16-bit address.

1 Windows is a trademark of Microsoft Corp.

The DSP card architecture is expandable to support the full extent of PCMCIA memory, which the DSP
can access in paged mode under software control. The paging feature allows users to load different
application algorithms into different pages for dynamic reconfiguration and task switching. The PCMCIA
common memory is mapped into the DSP's datalprogram space, and the PCMCIA attribute memory is
mapped into the DSP's global data space.

This particular implementation limits the DSP's paged external data and program space to 3M words and
global data space to 128K bytes. The DSP card is populated with two sets of fast (15-ns) SRAMs - one
64K-bytex 16-bit SRAM in one set and two 128K-byte x 8-bit SRAMs in the other. When the
64K-byte X 16-bit SRAM is enabled, it is used by the DSP as combined data and program memory. When
the 128K-byte x 8-bit SRAM is enabled, it is used as separate 64K words of data and 64K words of program
memory. The entire 256K bytes of memory are accessible by the PC in byte mode or word mode. However,
the DSP can access only one of these memories at a time, as enabled by the system configuration register.
The card also has 128K bytes of flash memory, which can be programmed by the PC. The DSP can be
configured to boot load from this flash memory upon reset. Although the entire flash memory is mapped
into the PC's attribute memory space, only 32K bytes are mapped into the DSP global data space at any
given time.

The host PC can access the card as a 16-bit UO device by writing to the configuration registers. The LiO
address for the card is selectable by the PC in the card configuration registers. When the DSP card is
configured as an VO-mapped peripheral, the host communication registers are dual-mapped into the PC's
common memory and V0 space.

Figure 2. DSP Card Architecture

FPGA Common Memory

Pty:'A

Clock AFE Clot$
Control

4
Bit 110,

Control/Status
& Communication

Registers Attribute Memory

Shared Addr/Data/l/O Bus
PC/DSP Bus
Arbitration

PCMCIA Interface

Serial Ports
Configuration

DSP Clock, TMS320 Registers
DSP Interrupt and

Emulation
,Control

AFE
Port

AFE
Module

Figure 2 shows a block diagram of the DSP card. The PCMCIA connector appears on the left side of the
board. The FPGA integrates all discrete logic in the system. The system clock to the DSP is provided by
the FPGA for the control of the DSP's operating speeds. A 48-pin analog front-end (AFE) connector
provides an external interface as well as system development and debug. The DSP serial port signals are
available at this connector along with programmable input and output pins and DSP interrupt pins to
monitor, configure, and control A/D converters, DIA converters, and other external devices. The connector
also provides DSP emulation control pins to help DSP algorithm development on the card using the TI
XDS5 10 emulation system.

Operation

The card's operating mode is controlled via the control, status, and communication registers in the FPGA.
Some of these registers are accessible only by the PC, some only by the DSP, and some by both the PC and
the DSP. These registers are mapped in the common memory space of the PC and I/O space of the DSP.

The DSP card can operate in two modes, the standard mode and the smart mode. In the standard mode, only
the signature register (SIGR) is accessible to the PC. Other registers exist only when the card is in the smart
mode.

Table 1. DSP Card Registers

Standard Mode
In the standard mode of operation, the DSP is reset and the clocks are turned off, disabling the DSP. This
reduces the standby power and also gives the PC uncontrolled access to the shared memory. In this default

Register Definitions

Signature register - shadowed in the FPGA

PC writes to DSPCR to control and
configure the DSP card

DSP status register holds DSP operation
and communication status

PCIDSP communication register - buffers
DSP's transmit data

PCIDSP communication register - buffers
data to be received by DSP

DSP reads status of host communication
from this PC status register

DSP readslwrites this buffered register to
create up to 16 bits of I10

DSP selects memory pages and clock
speeds by writing to SYSCFG

Register
Names

SlGR

Resewed

DSPCR

DSPSR

DSPTXD

DSPRXD

Resewed

PCSR

BlOR

SYSCFG

Resewed

Memory Address

PCMCIA
Common
Memory C5x (110)

000400h ----
OOOOOOh

000002h ----

000004h ----

000006h 0050h

000008h 0051 h

OAh-OFh ----

---- 0052h

---- 0053h

---- 0054h

---- 055h458h

Access Type

PC DSP

ww ----

---- ----

RW ----

ww ----

R W

W R

---- ----

---- R

---- WW

---- WW

---- ----

mode, the card appears to the PC and is used by the PC as a standard memory card only. The host can
download various communications signal processing (CSP) algorithms to the card without enabling the
DSP. The host can also program the flash memory with a DSP initialization code or even a real-time DSP
operating system before enabling the DSP. The DSP does not become active until it is specifically made
active by the host PC.

Smart Mode

In the smart mode, the communications registers become active and available to the host and DSP. The host
continues to have full access to the entire memory on the card. However, when the host PC accesses the
shared memory, the DSP operation is temporarily halted because the arbitration logic must put the DSP in a
hold condition to give the PC access to the memory bus. Control and communication between the DSP and
the PC are implemented via the host communication registers. Although the host PC accesses these regis-
ters as regular shared memory, they are physically located in the FPGA. This allows the PC and DSP to
access these registers without halting the DSP operation.

Switching Between Standard Mode and Smart Mode
When the PC writes the DSP signature pattern (A320), the DSP is activated and the card is switched from
standard mode to smart mode. Once a valid signature is detected, the corresponding bit is set in the DSP
control register, DSPCR. Resetting this bit automatically deactivates the DSP and switches the card to
standard mode. An alternate method of switching modes is writing to a user-defined register in the
PCMCIA attribute memory space.

Memory Organization
The PCMCIA DSP cards provide two separate memory spaces for the common memory and attribute
memory. Both memory spaces are accessible by the DSP and the PC. The DSP accesses the common
memory in its program and data space and the attribute memory in its global data memory space.

The ability to switch efficiently between various DSP tasks without having to reinitialize or reload is critical
for any multifunction communications system. Such a system needs a common memory area that DSP
operating systems and the host applications can always access to save system parameters and the operating
system itself. Page 0 of the DSP data and program memory is defined to be always active. Thus, DSP
operating systems can use page 0 as system memory and additional pages as application-specific memory.

Bus Arbitration
Both the DSP and the PC can access the shared memory on the card. The PC always has higher priority
for accessing the memory bus on the card. During PC accesses to the memory bus, the DSP operation is
halted. The arbitration logic in the FPGA asserts the HOLD signal to the DSP and extends the PC memory
bus access cycle by asserting the WAIT signal. Once the DSP acknowledges the hold by asserting HOLDA,
the PC WAIT is released and access to shared memory is completed. As soon as the PC completes its access,
control of the shared memory is returned to the DSP. Since communication, control, and control registers
are not resident in the shared memory, any PC access to these registers will not halt the DSP operation.

Memory Access by the PC

When the PC accesses the shared memory, the DSP is put on hold to grant control of the bus to the PC. The
PC's memory access is extended by using the WAIT signal until the DSP puts its bus in the high-impedance
state, as indicated by HOLDA signal. There is a time-out if HOLDA is not granted in time. When the card
is in smart mode, the PC cannot access the first 16 bytes of the shared memory (also note that the PC cannot
access DSP internal memory). This could be used as protected memory for the DSP. PC accesses to this

block do not cause the DSP to be put on hold. The PC must load the DSP reset and interrupt vectors and
the application algorithm before switching the card into smart mode. Since the PC can access the entire
memory on the card without consideration of the DSP page sizes, memory pages not used by the DSP can
be dedicated exclusively for the PC.

Memory Access by the DSP
The 'C5x versions of the DSP cards can address a maximum of 3M words of common memory. The DSP
address range is expanded by using the page selects. Page size for the 'C5x DSP is 32K (x 16) words.
Page 0 (both program and data memory for the 'C5x) is always enabled and cannot be deselected via page
select bits in the SYSCFG register. This allows DSP operating systems to use this memory without
affecting any memory dedicated for DSP applications.

Loading and Executing a Single Algorithm

Initially, the PC loads the desired algorithm to the DSP memory and initializes the DSP. Then the PC
enables itself to be interrupted by setting the appropriate enable bits in the DSP control register (DSPCR).
This interrupt can be generated by the AFE card (voice activated switch, ring detect, etc.), depending on
the application.

Figure 3. Loading and Executing a Single Algorithm

DSP Function
Controller

Application

7
Command Command Command

DSP Task Manager

DSP DSP DSP
Function Function Function
Module 1 Module 2 Module 3

I l l
Once the algorithm is loaded and the system is initialized, the host PC can reduce power consumption by
turning off the DSP clock, which automatically puts the DSP in a hold condition, placing its buses into the
high-impedance state and allowing the PC quicker access to the remaining unused memory on the card.

Operating System

When the desired external event occurs (indicated by the interrupt), the PC turns the DSP clock on, and
the DSP starts executing the algorithm. Since the algorithm is already loaded into DSP memory, there is
no delay in loading the algorithm; this makes fast system response time possible.

PCMCIA DSP Card

Note that the code may also be written into global data memory, and the DSP may be bootloaded by the
PC to force the DSP to run any preselected default application.

Loading and Executing Multiple Algorithms

First, the host PC initializes the DSP card and loads the DSP operating system. Now the operating system
can load multiple DSP algorithms into the DSP's local memory by using the paging scheme. Each
32K-word page could be used for a specific application. Algorithms that require more than 32K words of
memory can use multiple pages. Since the paging scheme is needed only for DSPs with a 16-bit address
reach, the host PC or other 32-bit DSP, such as the TMS320C3x, can ignore the paging scheme. Also note
that a real-time DSP operating system, such as SPOX 2.0, can be loaded into the DSP's on-chip RAM or
mask-programmable ROM, freeing the entire external memory for an applications program or data.

The PC and the DSP must follow a predetermined handshake protocol. Commands and data can be passed
easily by using the communication registers without halting DSP operation. The DSP operating system
controls enabling of DSP prograddata pages and transmission on processed data to the PC.

Host Communication

The host PC and the DSP communicate to each other via dedicated host communications registers. These
registers are dual-mapped into the common memory space and V0 space of the of the host PC. They are
always mapped into the VO space for the DSP.

The appropriate control and status registers can be programmed to allow an interrupt-based handshake
between the host and the DSP. Both the DSP and the host PC can also poll the appropriate bits in the status
registers, where interrupts are not available. This could be true in some motherboard applications, where
a single integrated device may share the local memory with the host CPU.

Conclusion

With a real-time DSP operating system such as SPOX 2.0, which is small enough to be executed from a
DSP's on-chip ROM, and application algorithm modules loaded into the shared memory as needed by the
host PC, the PCMCIA DSP card could become the universal communications system for the emerging
mobile office environment. With the TEC320 cDSP available today, the same set of CSP software modules
could run on a PDA motherboard or PC add-on card if the required analog interface is provided. With such
a universal communications platform and standardized user applications interface, the hardware
dependencies and porting nightmares should be a thing of the past.

Software Coding Guidelines
for 'C5x Developers

Mansoor A. Chishtie
Digital Signal Processing Applications - Semiconductor Gmup

Texas Instruments Incorporated

Introduction

This report furnishes guidelines to DSP application software developers on how to organize and structure
their software to facilitate its maintenance and ease its porting to any custom-defined DSP hardware
platform. The model DSP platform used here is a PCMCIA-based 'C5x DSP card with an external
connector for an analog interface. (For details on the card, see the preceding report, The PCMCIA DSP
Card: An All-in-One Communications System.)

The guidelines in this report should be used in conjunction with the following documents:

TMS320 Fixed-Point DSP Assembly Language Tools User's Guide
TMS320C2xKSx Optimizing C Compiler User's Guide

Hardware Platform Overview

A model DSP hardware platform that will be used as a test and demonstration bed for various DSP
applications consists of a PCMCIA type I1 card with an embedded 25-11s 'C51 digital signal processor and
memory. This card complies with the PCMCIA UO card specifications. This card is capable of running in
either standard or smart mode. In standard mode, the DSP is nonfunctional, and the card behaves like any
other PCMCIA memory card. The host can switch the card into smart mode by writing a predetermined
signature sequence to a memory location. In smart mode, the embedded DSP is active and executes code
from the card memory. Memory available on the first version of this card is 192K words, mapped as
multiple 64K pages in data and program spaces.

There are two standard methods for data transfer and command handshake between the host and the DSP:
the shared PCMCIA memory and a pair of dual-ported memory-mapped registers. The shared PCMCIA
memory, when properly initialized by a PCMCIA card controller, acts like extended memory to the PC
memory map. This is the preferred way of transfemng large blocks of code or data to and from the
embedded DSP. Note that this mode of access may impose additional time constraints on the real-time
execution of an application because the DSP halts while the PC is accessing the shared memory.

Both the host and the DSP can read or write to the dual-ported memory-mapped registers that provide the
other host-DSP interface. Access to these registers does not affect the normal operation of the DSP or the
host processor. Both sides can poll special bit flags or enable themselves to be interrupted whenever the
other side accesses these registers. This register-based communication link is especially suited for sending
commands and occasional data parameters to the other end. This feature should be fully utilized by
applications to pass results back to the host and let the host apply real-time control functions (such as mode
change, start, stop, etc.) to the applications.

For applications that require an analog interface to the outside world, a special connector is provided at the
back end of the PCMCIA card; the connector can interface special peripherals to the DSP serial port or bit
U0. Additionally, digital data can be sent over the serial link from an external processor or controller. The
connector also supports a TI JTAG emulator (XDS-5 10) that facilitates application software debug directly
on the card.

This hardware platform overview is provided for illustration purposes only. The following discussion is
equally applicable to any other 'C5x-based hardware platform.

Software Organization

It is strongly recommended that the following guidelines be observed to organize DSP application
software. This will not only result in well-structured code, but it will also make the application easier to
port to any other hardware platform.

Organize each software application as a collection of modules or files that belongs to one of the following
categories:

Source Modules (*.c, *.asm): C or assembly source code files should not define any global
constants or macros.

Include Modules (*.h, *.inc): All include files for C modules must use file extension *.h, and
all such files for assembly modules must use extension *.inc. Include files should define all
global constants, macros, or variable types. They should not allocate memory or define
functions, because this prevents them from being included by multiple source files. All functions
and variables that form part of the overall interface to a *.c or *.asm file should be declared in
a *.h or *.inc file. This provides a convenient overview of the interface and allows the compiler
or assembler to check for errors.

Linker Command File (*.cmd): This command file is used by the TI COFF linker to link multiple
modules into a single executable COFF output file.

Data Vectors (*.dat): These files should contain only data to be used for tests or algorithms.
There must not be any code in these data files. These files, if used, will probably be included or
copied (.include or .copy directives) in other source files or assembled as stand-alone modules.

Make File (*.mak, *.prj): It is strongly recommended that you maintain a project make file that
checks for any out-of-date target files and builds them automatically. Note that both Microsoft
and Borland make-file utilities use mutually compatible file syntax.

Organize source code files so that each file will fall under one of the categories shown in Figure 1:

Figure 1. Categories of Source Code Files

Core Routines: Include all software modules that implement the core algorithm. These routines
should be independent of hardware-specific implementations. The only target-specific

information that these routines should contain is the knowledge of the target DSP processor, in
case the modules are in assembly language. Developers of independent applications may want
to group these routines into additional categories on the basis of their functionality.

Control Routines: These routines consist of all software modules that implement control
functions. These control functions may include a C-like main function for program flow control,
task handling and scheduling functions, interrupt service routines that pass control to core
routines, a command handler that interprets host commands, and routines that initialize variables
and tables. Some of these modules may contain some hardware-specific information, but their
primary task is to control the program flow. They must not handle any inputloutput functions
or external peripheral accesses. Note that interrupt service routines (ISRs) that handle on-chip
or external peripherals must not be grouped here. The intention is to keep any modifications to
these routines at a minimum when the software is ported to a new platform.

Control Routines

Task Scheduling Main Control Command Software
Function Processing Initialization
(main 0)

Input/Output Routines: These routines should handle all the inputJoutput activities of the
application, including accesses to any on-chip or external peripherals and YO ports. As an
example, DSP code that handles host communication protocol falls under this category. A serial
port ISR and other functions that access an 110-mapped external peripheral also belong to this
category. It is recommended that each peripheral driver be arranged as one source file.

Input/Output Routines

External On-Chip Peripheral Host Interface Overlay
Peripheral Drivers Drivers Drivers Memory Drivers

Hardware Initialization Routines: In general, most nonhardware-specific initialization routines
belong to the control routines category. However, since core routines must not have
hardware-specific implementations, all functions that initialize external hardware such as
external peripherals, host processor, etc., must be grouped separately. Note that these routines
will differ from inputloutput routines in that they are invoked only once during system
initialization.

Test Routines: Application developers should provide a test procedure to verify functionality of
their applications. This is especially important when an application is ported (or modified) to
a different hardware platform. This test procedure can be in the form of a test program that calls

different modules of an application separately to determine their integrity, or it can be in the form
of input data vectors that can be processed by the application and output data vectors to be used
for verification of the results.

Memory Organization

Proper memory organization is essential for application portability and maintenance. The following
guidelines are mandatory:

Addresses of data variables and tables should not be hard-coded. For example, you cannot use
the .set directive to equate a label to an address. This is effectively a form of hard-coded memory
allocation because variable addresses are determined during assembly time. The .usect, .sect,
and other similar assembler directives should be used to allocate uninitialized and initialized
variables. It is recommended that all variable definitions and allocations be done in separate
files, as in the following examples:

Var-addr .set 0800h **Hard-Coded Addr**

Var-addr . usect "Section-name" , 1 **Addr Def. by Linker**

If a peripheral is mapped to a unique address, then this mapping should be clearly identified in
the linker command file.

No assumption should be made about the type of COFF loader available to a host. In many cases,
the host would not have access to a smart loader that can autoinitialize global variables during
loading (similar to the -c option in the COFF linker). In other cases, an application can be
preloaded in nonvolatile memory so that a loader is unnecessary. Therefore, an application
should initialize all data variables during system initialization. One side effect of this restriction
is that no initialized data can exist in data memory; all initialized tables and variables must be
in program memory. They can be later copied to data memory, if necessary, by the software
initialization module. This, however, implies that the total code size of an application will
become larger than necessary. If the program size is getting unreasonably large because of this
restriction, you can choose to ignore this restriction if your system loader can initialize data
memory directly. In this case, all initialized data sections must be clearly identified in the linker
command file.

Avoid any restrictions on placement of variables and tables in memory, if possible. Occasionally,
an application may require that restrictions be imposed on where a table can be placed in
memory. This may happen because 1) a particular DSP feature (for example, bit-reversed
addressing) demands it, or 2) it makes an algorithm implementation easier. Any such restriction
should be clearly defined in the COFF linker command file in the form of extended comments.

Global variables and local variables should be defined in separate sections. However, memory
can be reused, and local variables of independent functions can occupy the same physical
memory space when you use the GROUP and UNION linker directives (see the appendix for
a sample linker command file).

All code and data sections should be mapped to physical addresses during link time. In other
words, the linker command file should be the only module in which absolute addresses are
defined.

If your application uses overlays or multiple memory pages, you should use the TI COFF linker
syntax to define these overlays (see the appendix for an example linker command file).
Additionally, you should write a driver module to be a part of the inputloutput routines that will
handle the custom-defined memory overlaylpage control implementation. This driver module
should comply with the following restrictions:
- The module must be located in on-chip memory. This restriction is intended to guarantee

that the DSP will not be accessing off-chip memory when bank-switching occurs.
- Due to pipelining of instructions by the DSP, the next three instructions following a

bank-switch instruction can still access the previous bank. To avoid this, you must make
sure that the three instructions immediately following a bank-switch must not access the
address range that corresponds to the switched memory bank. Note that if this driver module
is called as a subroutine, then a return (RET) instruction immediately after the bank-switch
will guarantee that the switch has occurred before the DSP fetches instructions from the new
bank:

Bank-Switch: ; bank switch routine

out * , PA0 ; switch in new memory bank

ret ; return to new bank

Programming Guidelines
Many DSP applications use mixed-mode (C and assembly) programming techniques to
compromise between the need for efficient code and ease of programming. However, in some
cases, an application may completely be written in DSP assembly language. In such cases, it is
highly recommended that at least a dummy C main() function be written that simply transfers
control to an assembly function. In this way, a basic C environment is automatically set up by
main(), which leads to easier integration of any C functions in the future. If main() is the only
C function in an application, then the rest of the functions need not adhere to C calling
conventions.

Many mixed-mode applications strictly follow the C convention for function calls, parameter
passing, and variable allocation. However, you may need to avoid these constraints to efficiently
implement some assembly-level functions. All such exceptions must be clearly identified and
described in corresponding documentation. In some cases, when an assembly language function
is called only by other assembly functions, context is not maintained across the function calls.
These functions, although legal, must be clearly identified as non-C-callable functions to avoid
any future maintenance problems.

Self-modifying code should not be written. Such code is commonly used in interrupt vector
tables (IVT), where one ISR can be patched for another during runtime. You can avoid this by
using a software semaphore in ISR or by using an LAMhWBACC sequence to replace a more
conventional B address sequence in IVT. The following interrupt vector table code example
illustrates the use of an LAMhWBACC instruction to fetch the address of an ISR from a data
memory location (in data page 0):

INTI: l a m INTI-Addr

bacc

For relocatable sections of code, do not use the .asect directive. Instead, use the runtime and
load-time address options of the TI linker. This emphasizes our strategy of not allowing absolute
addresses in assembly modules. Note that the .asect directive requires an absolute address to be
specified as a parameter.

Avoid using numerical constants as instruction parameters. Code listings are more readable
when constants are replaced by meaningful labels. You can do this with the .set directive, as
shown in the following example:

replace:

add #07FFFh

with:

One-Q15 .set 07FFFh

add #One-Q15

Source Code Documentation
All source modules, whether in assembly or C, must maintain a modification history table that
lists the date and time of each modification in chronological order, the person who made the
change, and a brief description of the change.

Line-by-line comments are highly recommended, especially for assembly language modules.
All functions in a module, whether assembly or C, must clearly describe the
implementation-specific details of the function.

All functions should be preceded by a function header that gives the function description. input
and output parameter lists, global variables used, a list of nested function calls, a list of functions
that can call this function, and entrylexit conditions. Note that entry and exit conditions are
especially important for assembly functions because processor context is not often maintained
across function calls.

Appendix: A Sample Linker Command File for the 'C5x Card

The following linker command file is listed here to illustrate how to use the TI COFF linker syntax to define
overlays and multiple codeldata pages for the 'C5x PCMCIA card version 1 .O. This command file would
require minimum modifications to adapt to any 'C5x application running on this PCMCIA card.

PCMCIA 'C5x Card Memory Map: version 1.0

At reset, page 0 is in the 'C5x program space and page 1 is in data space.

If page 2 is enabled, it is dual-mapped in both program and data spaces. Each
application must carefully divide page 2 into two or more sections, and each
section must be considered as either program or data, but not both. In the
following example, the PRAM2 section is mapped as program, and the RAMEXT2
section is mapped as data, but this can be modified by an application.

The RAMSA and RAMDA memory blocks (in both page 0 and page 1) are defined as
overlays. This means that runtime addresses of multiple code and data
sections can be bound to these overlay sections. Note, however, that you must
copy any initialized section to an overlay area before it can be used.

All pages are 64K words in length.

Program
0000 - - - - - - - -

I I
I I
I PRAM I
I I
I I

2000 / - - - - - - I
1 RAMSA I

2400 1- - - - - - I
I I
I RAMEXT I
I I

FEOO 1- - - - - - I
1 RAMDA 1

FFFF --------
Page 0

0000

0060

007F

0100

0500

0800

OCOO

FFFF

Data
- - - - - - - -

I XXXXXXXXXX I

I XXXXXXXXXX I
1 _ _ _ _ _ _ 1
1 RAMDA I
I _ _ _ _ _ - /
I XXXXXXXXXX I
I _ _ _ _ _ _ _ /
I RAMSA I
I I I I

I I
FFFF - -------

Page 2

.
MEMORY

page 0 : / * Program Only * /
PRAM : origin = 00000h, length = 02000h

RAMSA : origin = 02000h, length = 00400h / * Overlay Section * /

RAMEXT: origin = 02400h, length = ODAOOh

RAMDA : origin = OFEOOh, length = 00200h / * Overlay Section * /
page 1 : / * Data Only * /

RAMB2 : origin = 00060h, length = 00020h

RAMDA : origin = 00100h, length = 00400h / * Overlay Section * /

RAMSA : origin = 00800h, length = 00400h / * Overlay Section * /

RAMEXT: origin = OOCOOh, length = OF400h

page 2 : / * Dual-Mapped in Program and Data * /

PRAM2 :origin = 00000h, length = 02000h / * Contains Code * /

RAMEXT2:origin = 02000h, length = OEOOOh / * Contains Data * /

1
SECTIONS

{

PROG1: load = PRAM Page 0

{

fl.obj(.text)

1
PROG2: load = PRAM2 page 2

£2.obj(.text)

1
DATA1: load = RAMEXT page 1

{

fl.obj(.data)

}

DATA2: load = RAMEXT2 page 2

{

£2.obj(.data)

1
UNION : run = RAMSA page 0 / * Overlay Section: * /

{ / * £3 and f4 functions * /

.text1 : load = RAMEXT page 0 / * will be copied and * /

{ / * run from RAMSA page0 * /

£3.obj(.text)

1
.text2 : load = RAMEXT page 0

{

fl.obj(.text)

1
1
UNION : run = RAMDA page 0

{

/ * Overlay Section: * /
/ * f5 and f6 functions * /

.text3 : load = RAMEXT page 0 / * will be copied and * /

{ / * run from RAMDA page0 * /
f5.obj(.text)

1
.text4 : load = PRAM page 0

{

f6.obj(.text)

1
1
UNION : run = RAMSA page 1

{

.bssl :

{

/ * Overlay Section: * /
/ * local variables of * /
/ * f3 and f4 functions * /

/ * overlay each other * /

/ * in RAMSA page 1 * /
1
.bss2 :

{

fl.obj(.bss)

1
1
UNION : run = RAMDA page 1

{

.bss3 :

{

/ * Overlay Section: * /
/ * local variables of * /

/ * f5 and f6 functions * /

/ * overlay each other * /

/ * in RAMDA page 1 * /

TCM320A C3x/4x
Voice-Band Audio Processors

Greg Davis
Russ MacDonald

Advanced Linear Applications - Semiconductor Group
Texas Instruments Incorporated

Introduction

The voice-band audio processor (VBAP) family of devices is a line of highly specialized single-supply
voice codecs specifically designed for use in battery-powered personal communications systems. The
VBAPuses the TI LinEPICZl 1 -ym semiconductor process, which results in very low power consumption.
In addition, a patented TI process is used to maintain extremely low noise specifications. The VBAP device
serves as an interface between a voice and a DSP and incorporates three major functions: transmit encoding
(A D conversion), receive decoding (DIA conversion), and transmit and receive filtering. The VBAP
family supports a serial data connection in either %bit companded y-Law or A-law mode, and a
pin-selectable 13-bit linear conversion mode. The VBAP utilizes sophisticated switched capacitor filters
to provide filtering that is compatible with most personal communication specifications, including the
EIA/TIA/IS-54 for U.S. digital cellular telephones and the CCITT G.711 and G.712 y-law and A-law
filtering requirements. The VBAP also provides direct microphone and speaker interface.

VBAP devices are available in 20-pin N (dual in-line plastic) and DW (surface mount) packages, as well
as soon-to-be-introduced QFP (quad flat pack <20-mm) packages.

Figure 1. VBAP Functional Block Diagram

VMlD

MlCBlAS

EARA

EARB

EARGS

EARMUTE

Power-Down Logic

DOUT

FSX

RSX-DCI

CLK

DCLKR

FSR

DIN

-
PDN

NOTE: fc is the -3-dB cutoff frequency.

Principles of Operation

To minimize crosstalk, the VBAP design utilizes independent converters, filters, and voltage references
for the transmit and receive channels. Figure 1 shows a typical VBAP functional diagram with these
features.

Transmit Channel

Microphone interface
A reference voltage equal to VDD/2, called VMID, is used to develop the midlevel virtual ground for all
amplifier circuits and the microphone bias circuits. Any power supply noise on VMID would normally be
detected on the output of the VBAP; therefore, VMID is brought to an external pin so that the voltage can
be filtered by using an external capacitor. The optimum capacitor combination is a 1-yF ceramic type in
parallel with a 470-pF ceramic chip cap. A reference voltage at the MICBIAS pin can be used to supply
bias current for the microphone. Because MICBIAS is also used internally to bias the microphone
amplifier, the common-mode rejection results in a quiet bias voltage. For this reason, it is recommended
that you use MICBIAS to bias only an electret microphone, as shown in Figure 2.

The microphone input signal (MICIN) is buffered and amplified with provision for setting the amplifier
gain to accommodate a range of signal input levels. This is accomplished by changing the value of the series
capacitor and feedback resistor of the (uncommitted) microphone-inverting amplifier. While the
configuration shown in Figure 2 will suit most applications, the steady-state impedance of the electret
microphone and the 2-kQ microphone bias resistor can be converted to a Thevenin's equivalent voltage
source with a series impedance to calculate the microphone amplifier gain. A resistor can also be added
in series with the 0.33-pF capacitor at the amplifier input to decrease the amplifier gain. Note that the
0.33-yF capacitor, along with the 2-kQ resistor, yields a high-pass filter with a -3-dB cutoff of 240 Hz and
-0.6 dB cutoff at 300 Hz, which is acceptable for voice-band communications.

Figure 2. VBAP Microphone Connection

VMID VMID Reference
I T I for Internal I

Microphone Mute
The microphone mute function disables the microphone amplifier, and the input to the transmit filters is
placed in a high-impedance state. With MICMUTE enabled, the output of the microphone amplifier is more
than 80 dB down from the signal on MICIN (microphone input), and the digital circuitry will transmit zero
code on DOUT. In addition, the VMID buffer is disabled, and the MICBIAS output is zero.

Transmit Filters
The amplified signal is passed through antialiasing and band-pass filters. The antialiasing filter is an analog
(continuous time) first-order low-pass filter with a cutoff of 20 kHz and is used to attenuate any modulation
components above half the sampling frequency of the next stage to avoid aliasing artifacts (Nyquist
sampling theorem). The next stage is a switched capacitor filter with a sampling rate of 256 kHz, so the
antialiasing filter provides a greater than 35-dB attenuation at half that sampling frequency, or 128 kHz.

The band-pass filters are composed of oversampled switched capacitor filters to avoid the effects of
aliasing. The first band-pass filter is a sixth-order low-pass filter with a cutoff of 3.5 kHz, and the second
is a first-order high-pass filter with a cutoff of 100 Hz, sampled at 256 kHz and 8 kHz, correspondingly.
The effective 0-dB bandpass of thesefilters is from 300 Hz to 3.4 kHz. Because of the oversampling and
because the clocks used by both these filters are synchronous, antialiasing products can be easily controlled
and virtually eliminated.

Encoding (AID Conversion)
The encoded data word structure is available in two formats: companded and linear conversion. The
formats are pin selectable. When the device is in the companded mode, the analog signal is sent to the
transmit filters and then input to a compressing analog-to-digital converter (COADC). The analog signal
is encoded into 8-bit digital representation via the p-Law and A-Law encoding scheme according to CCITT
G.711; this equates to 12 bits of resolution for low-amplitude signals. When the linear conversion mode
is selected, 13 bits of data are sent, padded with 0s to provide a 16-bit word. Both companded and linear
conversion modes use 2s-complement words.

Data can be transmitted in either a fixed or variable data rate mode. See Fixed and Variable Data Rate
Modes on page 266 for more detail.

The encoder internally samples the output of the transmit filter at the middle of the frame and holds each
sample on an internal sample-and-hold capacitor. The encoder performs an analog-to-digital conversion
(on a switched capacitor array), also starting in the second halfof the frame. To minimize the delay across
the VBAP, the actual conversion process does not complete until just before the next frame. Digital data
representing the sample is then transmitted at the start of the next frame. The transmit data is output on the
DOUT pin. Transmit data is clocked out on consecutive positive transitions of the transmit data clock,
which is CLK in the fixed-data-rate mode and DCLKR in the variable-date-rate mode.

The master-clock-to-frame-sync ratio is critical and cannot be violated. Refer to Timing and Clocking on
page 265 for more detail.

For both companded and linear modes, the sign bit is transmitted first, followed by the MSB, with the LSB
transmitted last.

Since the A D conversion rate is the master clock, and the band-pass switched capacitor filter clocks are
integer submultiples of the master clock, unwanted aliasing products are prevented.

Transmit Auto Zero
The auto zero circuit corrects for any DC offset on the input signal to the encoder by using a sign-bit
averaging technique. The sign bit from the encoder output is long-term averaged and subtracted from the

input to the encoder. This acts as a form of feedback to track and correct for changing DC offsets. The auto
zero circuitry is implemented after the high-pass transmit filter so that it will not mistakenly track
low-frequency audio signals. The response time of the auto zero circuitry is about five frames from device
power-up, or from standby to active.

Noise-Reduction Algorithm

The VBAP transmit circuitry incorporates patented TI circuits to reduce transmit noise to extremely low
levels. These circuits reduce the transmit audio when the analog input falls below a set level; they are used
in the companded mode only. The levels at which the noise reduction circuits are enabled include hysteresis
for further improved performance; these levels are about -55 and -60 dB. When the VBAP detects these
low audio input conditions, it puts out a zero code (1 11 1 11 11 in p-Law and 0 101 0101 in A-Law, according
to CCITT G.711 specifications). This is different from the normal output under idle channel noise
conditions, which typically consists of a random sequence of codes around 0 (LSB and/or second LSB and
MSB sign bit toggling arbitrarily).

Receive Channel

Decoding (DIA Conversion)

Data can also be received in either a fixed or variable data rate mode. See Fixed- and Variable-Data-Rate
Modes on page 266 for more detail.

In the companding modes, the serial data word is received at DIN on the first eight clock cycles in the
fixed-data-rate mode or the last eight clock cycles in the variable-data-rate mode. The decoding section
converts the 8-bit PCM data into an analog signal with 12 bits of dynamic range, according to CCITT G.7 11
specifications. In the linear mode, the serial data word is received in the first 13 clock cycles. In both the
companded and linear modes, input data is clocked in on consecutive negative transitions of the receive
clock, which is CLK in the fixed-data-rate mode and DCLKR in the variable-date-rate mode.
Digital-to-analog conversion is performed, and the corresponding analog sample is held on an internal
sample-and-hold capacitor. The sample is then transferred to the receive filter during the next frame.

Receive Filters

The receive filter is a switched capacitor sixth-order low-pass filter with a cutoff of 20 kJ3z; it provides
pass-band flatness and stop-band rejection that fulfills both the AT&T D31D4 specifications and the CCITT
recommendation for G.712. The filter also contains the (sinx)/x correction response of such decoders.

Receive BufferNolurne Control

The receive buffer contains the volume control circuitry. When data is received in the linear mode, the 13
bits are read as data, and the remaining 3 bits are used as programmable volume control of the analog output.
These volume control bits originate from a DSP or other device that is interfaced with the VBAP, and they
serve to attenuate the speaker output of the VBAP in seven 3-dB steps. The volume control bits are not
latched into the VBAP, so they must be present in each received data word. If they are missing, the VBAP
circuitry will assume that the three volume control bits are 0 (0-dB attenuation). In the companded mode,
programmable gain is not used. Table 1 illustrates the volume control bits required for a given attenuation.

Table 1. Receive-Channel Volume-Control Bits

NOTE: The first bit is the MSB.

Bits 14-16 in DIN Input Data
Stream
000
001
01 0
01 1
100
101
11 0
111

Speaker Amplifier Overview

The VBAP incorporates an analog output power amplifier. This amplifier can drive transformer hybrids
or low-impedance loads directly in either a differential or single-ended configuration. In addition, the
VBAP speaker output stage (in its differential configuration) allows for further volume control (in addition
to the volume control bits), by connection of a resistor chain to the output terminal of the device.

Resulting Receive Channel
Attenuation

0 dB
-3 dB
-6 dB
-9 dB
-12 dB
-15 dB
-18 dB
-21 dB

The speaker amplifier output will typically assume a DC offset of approximately 40 mV. This is a normal
consequence of using switched capacitors in the VBAP design. Potential biasing problems can be avoided
by the use of an AC coupling capacitor.

Timing and Clocking

Master Clock and Frame Sync

The VBAP requires a master clock and frame sync. The master clock is used for many internal functions,
most notably to clock the switched capacitor filters and the AID-D/A conversion process in both the
transmit and receive directions. The VBAP family (TCM320ACxx) accommodates a variety of master
clock frequencies, as shown in Table 2.

Table 2. VBAP Master Clock Frequencies

Device Suffix (xx)
36, 37, 46

39

4 1

42

44

Master Clock (MHz)
2.048

2.6

1 .I52

1.944

1.536

Power-Down and Standby Operations

To minimize power consumption, a power-down mode and three standby modes are provided.

For power-down, an external low signal is applied to PDN. In the absence of a signal, PDN is internally
pulled up to a high logic level, and the device remains active. In the power-down mode, the average power
consumption is reduced to 1.25 mW.

The standby modes give you the option of putting the entire device on standby or putting only the transmit
or receive channels on standby. The standby modes are entered by removing one or both of the frame syncs.
Table 3 illustrates all VBAP modes of operation.

Table 3. Power-Down and Standby Procedures

Power down PDN = low TSX and DOUT in a high-impedance
FSXIFSR = X/X 1 mW / state

Device Status

Power on

Entire device on
standby

Receive only
(transmit standby)

Procedure

PDN = high
FSX = pulses
FSR = pulses

FSX = low
FSR = low
PDN = high

FSX = low
FSR = pulses
PDN = high

TSX and DOUT in a high-impedance
state

Typical Power
Consumption

40 mW

TSX and DOUT in a high-impedance
state within 5 frames

Digital Output Status

Active

Fixed- and Variable-Data-Rate Modes

Transmit only
(receive standby)

The VBAP is designed to operate in both the fixed and variable-data-rate modes. The mode of operation
is pin selectable. In the fixed mode, the data is transmitted (or burst) and received at the rate of the master
clock frequency and is sampled every frame. In the variable-data-rate mode, the data is transmitted or
received at a rate slower than the master clock frequency and uses the data clock input DCLKR.

For example, suppose you are using the TCM320AC36 VBAP in the 8-bit companded mode and
variable-data-rate configuration. This VBAP has a master clock frequency of 2.048 MHz and must use a
frame sync of 8 kHz to maintain a 256 master-clock-to-frame-sync ratio. The data is sampled every 125
ps, but the speed at which the data is transmitted (or burst) and received, each 125 ys, can vary from 2.048
MHz to 64 kHz. Notice that the slowest speed of the data clock is 64 kHz; any slower speed would not allow
a full 8-bit sample to be performed before the next frame begins. At 64 kHz, the complete frame is used
to transmit or receive the data (8 bits x 8000 = 64 kbps). Likewise, the minimum variable-data-rate speed
for the 16-bit linear mode would be 128 kHz (16 kHz x 8000).

FSR = low
FSX = pulses
PDN = high

20 mW Active

Application Information

VBAP interfaced to a DSP

The most common application for the VBAP is as an interface to a DSP. The VBAP performs the
analog-to-digital and digital-to-analog conversions, along with filtering, while the DSP performs more
complex functions with the encoded speech. For example, in a cellular telephone application, the DSP
would typically perform equalization and speech coding through the use of algorithms (code) executed by
the DSP. The circuit in Figure 3 illustrates a typical VBAP-to-DSP interface.

Figure 3. VBAP Interfaced to a 'C5x DSP

TMS320C5x DSP
DR
CLKR
DX

I

S\N' MICBIAS

. =
:

4

1_
lpF

2 kc2
IF =

TCM320AC36
VMlD DOUT

DIN
CLKX

40 MHz
X1

ASIC Clock
Generator

Device Power-Up Sequence
The VBAP should be powered up and initialized as follows:

1. Apply GND

2 . Apply VDD
3. Apply low to PDN bar
4. Connect master clock
5. Connect data clock (if used)
6. Remove low to PDN bar
7. Apply FSX andlor FSR synchronization pulses

Grounding and Decoupling
Use a ground plane on the PCB, covering as much unused area as possible.

Bypass the VBAP with a high-quality 0.1-pF ceramic capacitor (such as a CK05) directly across the VBAP
power supply pins. Ceramic capacitors have a low ESR (equivalent series resistance) or high Q; they are
able to react to fast changes in voltage and are used to suppress high-frequency transients. High-frequency
voltage transients result from instantaneous high current consumption during digital device switching.
Since all power supplies have an internal impedance that prevents infinite current sourcing, power supply
voltage ripple, or noise, will result. Capacitive loading on the power supply rail regulates the voltage of
the supply.

Any power supply noise on VMID would normally be detected on the output of the VBAP; therefore,
VMID is brought to an external pin so that the voltage can be filtered by using an external capacitor. The
optimum capacitor combination is a 1-pF ceramic in parallel with a 470-pF ceramic chip cap.

Power Supply
A voltage regulator should always be used, even with battery power. Batteries in particular have a high
internal impedance that allows the DC voltage to vary under instantaneous current consumption during
digital switching. The resultant change in voltage manifests itself as noise on the power supply rail.

Use a 10-pF capacitor across the power supply rails on the PCB. This serves the same purpose as the
ceramic capacitor, except that it responds well to lower frequency transients.

All power supply traces should be as close as possible to the ground plane. Proximity to the ground plane
adds parallel capacitance.

Variable Data Rate at Master Clock Frequency
In some applications, it is desirable to run the VBAP in the variable-data-rate mode at a data rate equal to
the master clock speed. This gives you the advantage of using the variable-data-rate mode (as with repeated
data while frame sync is high) while still running the maximum data rate as in the fixed-data-rate mode (in
fixed-data-rate mode, the data clock is internally run at the master clock speed).

If the device is operated in the variable-data-rate mode with the data clock run at the master clock frequency,
the DCLKX and MCLK pins cannot be directly connected externally. If you choose to use the master clock
as the DCLKX, you must buffer the output of the master clock before connecting it to DCLKX. This is
necessary because the VBAP always powers up in the fixed-data-rate mode, and for the first several clock - -
cycles, the DCLKX pin is actually an output (TSK) as defined in the data sheet. The TSX output is a
transmit time strobe that will pull the MCLK pin low; this will corrupt the MCLK input, if MCLK and
DCLKX are directly connected externally to the device. Only after the first several master clockcycles does
the device assume a fixed-data-rate mode and the DCLKX pin become an input. Therefore, the suggested
method is to join MCLK and DCLKX before a buffering stage for the DCLKX line.

Typical PCM Output Expected From a Transmit VBAP

In an ideal situation, the 8- (and 13-bit) AD converter in the VBAP is designed with a noise floor that
equates to the transition of half the LSB. In the linear mode, a half bit represents approximately -75 dB,
as shown below:

20 X log 213 = -75 dB ["I
This corresponds to the VBAP data sheet, which specifies the transmit noise in linear mode to be -74 dB.
Therefore, using a VBAP in the receive mode, configured for a maximum output signal of 4 volts
peak-to-peak (Vp-p which is equal to 1.414 V,,), the VBAP would encode this half bit of noise and
experience about 250 pV,, of noise on the speaker output terminals, as in this equation:

-75 dB = 20 x log A
1.4 1 4v,, (2)

where X = output that is 75 dB down from 1.414 V,, (that is, X = 250 pV,,).

Part IX
Bibliography

Bibliography

TMS320 Bibliography

Since TMS32010 was disclosed in 1982, the TMS320 family has received ever-increasing recognition. The
number of outside parties contributing to the extensive development support offered by Texas Instruments
has grown significantly. Many technical articles are being written about TMS320 applications in the field
of digital signal processing.

To keep TMS320 designers aware of new applications and developments related to the TMS320 DSPs,
Texas Instruments has published extensive bibliographies of TMS320-related conference papers and
technical articles in the Digital Signal Processing Applications with the TMS320 Family, Volumes 1,2, and
3 and in Digital Control Applications with the TMS320 Family. The following TMS320 bibliography
serves as an extension of the previously published bibliographies. It lists only those papers and articles that
are generally related to telecommunication applications. For additional papers on this subject, please refer
to the appropriate sections of the above-mentioned bibliographies. Readers who are interested in gaining
further information about these applications may obtain copies of these articleslpapers from their local or
university library.

The articles are organized into the following six categories:

1. Mobile Radio Systems 4. Speech Recognition
2. Modulation and Demodulation 5. Speech Commpression
3. Equalization, Channel Estimation, and Adaptive Filtering 6. System Design Considerations

Mobile Radio Systems

1. An, J.F., Turkmani, A.M.D., and Parsons, J.D., "Implementation of a DSP-Based Frequency
Non-Selective Fading Simulator", Fifth International Conference on Radio Receivers and
Associated Systems, Conference Publication No. 325, 1990, pp. 20-24.

2. Cullen, P. J., Fannin, P. C., and Molina, A., "Wide-band Measurement and Analysis Techniques
for the Mobile Radio Channel", IEEE Transactions on Vehicular Technology, Volume 42, No.
4, November 1993, pp. 589-603.

3. Leung, P. S.K., and Zhu, M., "A Simple DSP Rayleigh Fading Simulator for Mobile Radio",
IREECON '9 1, Australia S Electronics Convention Proceedings, Volume 1, 1992, pp.
49-52.

4. Lim, M.S., and Park, H.K., "The Implementation of the Mobile Channel Simulator in the
Baseband and Its Application to the Quadrature Type GMSK Modem Design", 40th IEEE
Vehicular Technology Conference: On the Move in the 90S, IEEE Cat. No. 90CH2846-4, 1990,
pp. 496-500.

5. Peterson, B., Gross, K., Chamberlin, E., Montague, T., and Jones, W., "Integrated CIS
VLFIOmega Receiver Design", IEEE Aerospace and Electronics Systems Magazine,
Volume 8, No. 1, January 1993, pp. 9-20.

6. Wu Bo, Y.Y., and Wang, Jing, "A Direct Conversion Transceiver for GMSK in Digital Mobile
Communications", Proceedings of 1992 International Conference on Communication
Technology, Volume 2, 1992, pp. 28.05114.

Modulation and Demodulation

1 . Boudreau, D., "2400 BPS TMS 2010 Modem Implementation for Mobile Satellite
Applications", Proceedings of the Thirteenth Biennial Symposium on Communications, 1986,
pp. B3114.

2. Gott, G.F., Darby shire, E.P. , Brydon, A.N., Oodit, B.P. , and Rubenstein, R.H., "Robust Slow
and Medium Rate Data Transmission", Fifth Intemational Conference on HF Radio Systems
and Techniques, Conference Publication No. 339, 1991, pp. 212-216.

3. Perl, J.M., Bar, A., and Cohen, J., "TMS-320 Implementation of a 2400 bps V.26 Modem",
Signal Processing Ill: Theories and Applications. Proceedings of EUSIPCO-86: Third
European Signal Processing Conference, Volume 2, 1986, pp. 1121-1124.

4. Tavares, G., Henriques, J., Piedade, M.S., Goncalves, V., Costa, T., and Gerald, J., "High Speed
Data Modem Implementation Using the TMS320C2SV, 1990IEEEIntemational Symposium on
Circuits and Systems, IEEE Cat. No. 90CH2868-8, Volume 4, 1990, pp. 2889-2892.

5. Yim, W.H., Kwan, C.C.D., Coakley, F.P., and Evans, B.G., "On-Board Multicarrier
Demodulator for Mobile Applications Using DSP Implementation", Space Communications,
Volume 7, No. 4-6, November 1990, pp. 543-548.

Equalization, Channel Estimation, and Adaptive Filtering

1. Ahmed, I., and Lovrich, A., "Adaptive Line Enhancer Using the TMS320C2SW, Northcon186,
Conference Record, 1986, pp. 141311-10.

2. Bateman, S.C., and Hale, R.G., "Real Time Implementation of Adaptive Filter Algorithms for
High-Speed Data Transmission", 1989.

3. Clarkson, P. M., and Dokic, M.V., "Real-Time Adaptive Filters for Time-Delay Estimation",
Proceedings of the 32nd Midwest Symposium on Circuits and Systems, IEEE Cat. NO.
89CH2785-4, Volume 2, 1990, pp. 891-894.

4. Er, M.H., Ooi, T.H., Li, L.S., and Liew, C.J., "A DSP-based Acoustic Feedback Canceler for
Public Address Systems", Microprocessors and Microsystems, Volume 18, No. 1, January 1994,
pp. 39-47.

5 . Eriksson. L.J., and Allie, M.C., "System Considerations for Adaptive Modelling Applied to
Active Noise Control", 1988 IEEE Intemational Symposium on Circuits and Systems:
Proceedings, IEEE Cat. No. 88CH2458-8, Volume 3, 1988, pp. 2387-2390.

6 . Kang, G.S., and Fransen, L.J., "Experimentation with An Adaptive Noise-Cancelation Filter",
IEEE Transactions on Circuits and Systems, Volume CAS-34, No. 7, July 1987, pp. 753-758.

Equalization, Channel Estimation, and Adaptive Filtering (Continued)

7. Kloos, M.N., and Jenkins, W.K., "The Investigation of New Adaptive Filtering Algorithms for
Telecommunications Echo Cancelation Implemented in TMS32010 Fixed-Point Assembly
Code", Proceedings of the 33rd Midwest Symposium on Circuits and Systems, IEEE Cat. No.
90CH2819-1, Volume 2, 1991, pp. 1034-1037.

8. La1 Sharma, P., "Implementation of Adaptive Recursive Echo Canceler Using the TMS320C25
Digital Signal Processor", Proceedings of the 34th Midwest Symposium on Circuits and Systems,
IEEE Cat. No. 91CH3143-5, Volume 1, 1992, pp. 494-496.

9. Mirchandani, G., Gaus, R.C., Jr., andBechtel, L.K., "Performance Characteristics of a Hardware
Implementation of the Cross-Talk Resistant Adaptive Noise Canceler", ICASSP 86
Proceedings, International Conference on Acoustics, Speech and Signal Processing, IEEE Cat.
No. 86CH2243-4, Volume 1, 1986, pp. 93-96.

10. Muller, G.S., and Pauw, C.K., "Acoustic Noise Cancellation", ICASSP 86 Proceedings,
International Conference on Acoustics, Speech and Signal Processing IEEE Cat. No.
86CH2243-4, Volume 2, 1986, pp. 913-916.

11. Yeh, H., "Adaptive Noise Cancellation for Speech With a TMS32020, Proceedings: ICASSP
87, 1987 International Conference on Acoustics, Speech, and Signal Processing, IEEE Cat. No.
87CH2396-0, Volume 2, 1987, pp. 1171-1 174.

12. Young, M.C.S., Grant, P. M., and Cowan, C.F.N., "Block LMS Adaptive Equaliser Design for
Digital Radio", Signal Processing IV: Theories and Applications. Proceedings ofEUSIPC0-88,
Fourth European Signal Processing Conference, Volume 3, 1988, pp. 1349-1 352.

13. Zhuang, J.D., Zhu, X.L., and Lu, D.J., "Design and Implementation of a Programmable Blind
Equalizer for High-Speed Multilevel Data Transmission", IEEE TENCON '90: 1990 IEEE
Region 10 Conference on Computer and Communication Systems, Cat. No. 90CH2866-2,
Volume 2, 1990, pp. 701-704.

Speech Recognition
1. Aktas, A., and Zunkler, K., "Speaker-Independent Continuous HMM-Based Recognition of

Isolated Words On A Real-Time Multi-DSP System", EUROSPEECH 91. 2nd European
Conference on Speech Communication and Technology Proceedings, Volume 3, 1991,
pp. 1345-1348.

2. Attili, J.B., Savic, M., and Campbell, J.P. Jr., "A TMS32020-based Real Time,
Text-Independent, Automatic Speaker Verification System", ICASSP 88: 1988 International
Conference on Acoustics, Speech, and Signal Processing, IEEE Cat. No. 88CH2561-9,
Volume 1, 1988, pp. 599-602.

Speech Recognition (Continued)

3. Ciaramella, A., and Venuti, G., "Dynamic Programming With Hidden Markov Models on a
TMS32020 Digital Signal Processor", Signal Processing IV: Theories and Applications.
Proceedings of EUSIPCO-88: Fourth European Signal Processing Conference, Volume 2,
1988, pp. 751-754.

4. Sedivy. J., Filcev, J., Uhlir, J., Vanek, T., Hanzl, V., Oliva, Z., and Kotek, P. , "The One-Chip
Speech Recognition System", EUROSPEECH 91: 2nd European Conference on Speech
Communication and Technology Proceedings, Volume 3, 1991, pp. 1357-1 361.

Speech Compression

1. "A Real-Time French Text-to-Speech System Generating High-Quality Synthetic Speech,
ICASSP 90, 1990 International Conference on Acoustics, Speech and Signal Processing, IEEE
Cat. No. 90CH2847-2, Volume 1, 1990, pp. 309-312.

2. Ancin, F.J., Burrows, B.L., and Carrasco, R.A., "Pitch Detection of Speech Signals Using the
Wavelet Transform" Fifth Bangor Symposium on Communications, 1993, pp. 239-242.

3. Andreotti, F.G., Maiorano, V., and Vetrano, L., "A 6.3 kbls CELP Codec Suitable for Half-Rate
System", ICASSP 91, 1991 International Conference on Acoustics, Speech and Signal
Processing, IEEE Cat. No. 91CH2977-7, Volume 1, 1991, pp. 621-624.

4. Zhigang, C., Wei, Z., and Wanjun, Z., "An Improved Formant Synthesis System Using
TMS320C25", 1991 IEEE International Symposium on Circuits and Systems, IEEE Cat. No.
91CH3006-4, Volume 1, 1991, pp. 53-56.

5. Casale, S., Giarrizzo, C., and La Corte, A., "A DSP Implemented SpeechNoiceband Data
Discriminator", GLOBECOM '88: IEEE Global Telecommunications Conference and
Exhibition - Communications for the Information Age, Conference Record, IEEE Cat. No.
88CH2535-3, Volume 3, 1988, pp. 1419-1427.

6. Clarkson, P.M., and Bahgat, S.F., "Envelope Expansion Methods for Speech Enhancement",
Journal of the Acoustical Society of America, Volume 89, No. 3, March 1991, pp. 1378-1382.

7. Cross, T.E., and Loasby, J.M., "Modelling the Vocal Tract Using Multiple Digital Signal
Processors", Sixth Intemational Conference on Digital Processing .of Signals in
Communications. Conf. Publ. No. 340, 1991, pp. 219-225.

8. Dankberg, M., Iltis, R., Saxton, D., and Wilson, P., "Implementation of the RELP Vocoder Using
the TMS320", ICASSP 84. Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, Volume 2, 1984, pp. 27.811-4.

Speech Compression (Continued)

9. Dixon, J.L., Varma, V.K., Sollenberger, N.R., and Lin, D.W., "Single DSP Implementation of
a 16-kbps Sub-Band Speech Coder for Portable Communications", ICASSP-89: 1989
International Conference on Acoustics, Speech and Signal Processing, IEEE Cat. NO.
89CH2673-2, Volume 1, 1989, pp. 184-1 87.

10. Frantz, G.A., and Lin, K.S., "A Low-Cost Speech System Using the TMS320C17", IES
Journal, Volume 29, No. 3, October 1989, pp. 41-44.

11. Greenwood, M., and Dent, P., "A Full-Duplex ADPCM Voice Coder for Use in the Ferranti
Zonephone", IEEE Colloquium on VLSI Implementations for Second Generation Digital
Cordless and Mobile Telecommunication Systems, Digest No. 043, 1990, pp. 711-5.

12. Hill, P. D., and Mikael, W.B., "Real-Time Implementation of a Variable Stepsize Adaptive
Algorithm", Proceedings of the Twenty-Seventh Midwest Symposium on Circuits and Systems,
Volume 1, 1984, pp. 181-184.

13. Holck, A.W., and Anderson, W.W., "A Single-Processor LPC Vocoder", ICASSP 84.
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
Volume 3, 1984, pp. 44.13114.

14. Holck, A.W., "Low-Cost Speech Processing With TMS32010", Midcon 83 Conference Record,
1984, pp. 16.2114.

15. Jain, V.K., Skrzypkowiak, S.S., and Heathcock, R.B., "Full Duplex Speech and Data Coder:
Algorithm Enhancement Test Bed", GLOBECOM '88. IEEE Global Telecommunications
Conference and Exhibition - Communications for the Information Age, Conference Record
IEEE Cat. No. 88CH2535-3, Volume 3, 1988, pp. 1409-1413.

16. Karjalainen, M., and Laine, U.K., "A Model for Real-Time Sound Synthesis of Guitar on a
Floating-Point Signal Processor", ICASSP 91: 1991 International Conference on Acoustics,
Speech and Signal Processing, IEEE Cat. No. 91CH2977-7, Volume 5, 1991, pp. 3653-3656.

17. Kelly, D.P., and Melsa, J.L., "Syllabic Companding and 32 kbls ADPCM Performance", IEEE
International Conference on Communications 1985, IEEE Cat. No. 85CH2175-8, Volume 1,
1985, pp. 414-417.

18. Kitson, EL., and Zeger, K.A., "A Real-Time ADPCM Encoder Using Variable Order Prediction
Speech", ICASSP 86 Proceedings: International Conference on Acoustics, Speech and Signal
Processing, IEEE Cat. No. 86CH2243-4, Volume 2, 1986, pp. 825-828.

19. Lazzari, V., Quacchia, M., Sereno, D., and Turco, E., "Implementation of a 16-kbitls Split
Band-Adaptive Predictive Codec for Digital Mobile Radio Systems", CSELT Technical
Reports, Volume 16, No. 5, August 1988, pp. 443-447.

Speech Compression (Continued)
20. Lazzari, V., Quacchia, M., Sereno, D., and Turco, E., "SB-APC Codec for Digital Mobile Radio

Applications", Signal Processing IV.: Theories andApplications. Proceedings of EUSIPCO-88.
Fourth European Signal Processing Conference, Volume 2, 1988, pp. 615-617.

21. Leung, S.H., Chung, C.Y., and Luk, A., "A Low Noise Fixed-Point Implementation of GSM
Speech Codec On TMS320C25", Proceedings of the Fourth Australian International
Conference on Speech Science and Technology, 1992, pp. 381-386.

22. Liu, Z.Y., and Zhang, L.P., "Implementation of Modified Regular-Pulse Excited Linear
Predictive Codec on TMS320C25", 41st IEEE Vehicular Technology Conference. Gateway to
the Future Technology in Motion, IEEE Cat. No. 91CH2944-7, 1991, pp. 280-284.

23. Liu, Z.Y., and Zhu, W.M, "Realtime Implementation Algorithm of CELP at 4.8 kbls", ICC 91
International Conference on Communications, Conference Record, IEEE Catalog
No. 91CH2984-3, Volume 3, 1991, pp. 1731-1735.

24. Macres, J.V., "Real-Time Implementations and Applications of the US Federal Standard CELP
Voice Coding Algorithm", Proceedings of the Tactical Communications Conference. Tactical
Communications: Technology in Transition, Volume 1 (Unclassified Papers), IEEE Cat. No.
92TH0467- 1, 1992, pp. 4145 .

25. Marks, J.A., "Real Time Speech Classification and Pitch Detection", COMSIG 88. Southern
African Conference on Communications and Signal Processing, Proceedings, IEEE Cat. No.
88TH0219-6, 1988, pp. 1-6.

26. Minin, A.V., and Deryugin, S.N., "The Adaptive Differentia1 PCM Codec of the DKD-400
Digital Satellite Communications Equipment", Elektrosvyaz, October 1992, pp. 24-26.

27. Mumolo, E., Riccio, A., and Abbattista, G., "An Efficient Algorithm for Real-Time
VoicedlUnvoiced Decision", EUROSPEECH '91 - 2nd European Conference on Speech
Communication and Technology Proceedings, Volume 3, 199 1, pp. 1305-1 308.

28. Nieminen, T., and Simola, A., "A Gateway Between a EUROCOM Dll-Network and a Private
FTT-Type CCITT SS7-Network, MILCOM '92 - Communications: Fusing Command,
Control and Intelligence, Conference Record, IEEE Cat. No. 92CH3 13 1-0, Volume 1, 1992.

29. Hongwen, P., and Fengji, S., "Research and Implementation of Linear Predictive Speech
Analysis and Synthesis", China 1991 International Conference on Circuits and Systems,
Conference Proceedings, IEEE Cat. No. 91TH0387- 1 ,Volume 1, 199 1, pp. 22-25.

30. Perosino, F., and Quacchia, M., "DSP-Based Implementation of SB-ADPCM Audio Codec for
ISDN Terminals", CSELT Technical Reports, Volume 18, No. 2, 1990, pp. 83-87.

Speech Compression (Continued)
3 1. Rajugopal, G.R., and Paulraj, A., "Multichannel All-Digital PCM-ADM Transcoder", IETE

Technical Review, Volume 9, No. 3, May 1992, pp. 221-217.

32. Raviraj, C.R., and Jones, E.V., "Adaptive Coding for Conversational Speech Communication",
Second IEEE National Conference on Telecommunications, (Conference Publication No. 300),
1989, pp. 344-348.

33. Reilly, M.T., "A Hybridized Linear Prediction Code Speech Synthesizer", MILCOM 86: 1986
IEEE Military Communications Conference. Communications-Computers: Teamed for the
'90's. Conference Record, IEEE Cat. No. 86CH2323-4, Volume 2, 1986, pp. 32.511-5.

34. Rose, C., and Donaldson, R.W., "Real-Time Implementation and Evaluation of An Adaptive
Silence Deletion Algorithm for Speech Compression", IEEE Pac$c Rim Conference on
Communications, Computers and Signal Processing, IEEE Cat. No. 91CH2954-6, Volume 2,
1991, pp. 461-468.

35. Rothweiler, J., "Noise-Robust 1200-bps Voice Coding", Proceedings of the Tactical
Communications Conference. Tactical Communications: Technology in Transition, Volume 1
(Unclassified Papers), IEEE Cat. No. 92TH0467-1, 1992, pp. 65-69.

36. So, J.L., "Implementation of an NIC Nearly Instantaneous Companding 32 kbps Transcoder
Using the TMS320C25 Digital Signal Processor", GLOBECOM '88, IEEE Global
Telecommunications Conference and Exhibition - Communications for the Information Age,
Conference Record, IEEE Cat. No. 88CH2535-3, Volume 3, 1988, pp. 1414-1418.

37. Stone, R.E., "Speech Processing Using the TMS32010 - A Case Study", Digital Signal
Processing: Principles, Devices and Applications, 1990, pp. 354-370.

38. Tsakalos, N., and Zigouris, E., "Autocorrelation-Based Pitch Determination Algorithms for
Real-Time Vocoders with the TMS32020/C25", Microprocessors and Microsystems, Volume
14, No. 8, October 1990, pp. 5 11-5 16.

39. Wong, O.Y., Law, K.W., Leung, S.H., Chan, C.F., and Luk, A., "A Novel Pulse-Excitation Using
Coded Locations for Linear Predictive Speech Coding", Sixth International Conference on
Digital Processing of Signals in Communications, Conf. Publ. No. 340, 1991, pp. 300-304.

40. Wei, Z., and Zhigang, C.,"Real-Time Formant Speech Synthesis Using the TMS320C25",
China 1991 International Conference on Circuits and Systems. Conference Proceedings, IEEE
Cat. No. 91TH0387-1, Volume 1, 1991, pp. 41-44.

41. Zinser, R.L., "An Efficient, Pitch-Aligned High-Frequency Regeneration Technique for RELP
Vocoders", ICASSP 85, Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, IEEE Cat. No. 85CH2118-8, Volume 3, 1985, pp. 969-972.

System Design Considerations

1. Chen, D.C.C., and Price, R.H., "A Real-Time TMS320C40-Based Parallel System for High
Rate Digital Signal Processing", ICASSP 91, 1991 International Conference on Acoustics,
Speech and Signal Processing, IEEE Cat. No. 91CH2977-7, Volume 3, 1991, pp. 1573-1576.

2. Culloch, A.D., "3L Parallel C for the Texas Instruments TMS320C40: Initial Applications",
Parallel Computing and Transputer Applications, Volume 2, 1992, pp. 1080-1088.

3. Dunn, S.M., Peters, J.E., Finkel, B., and Neafsey, L., "DISIPLE: Digital Signal Processor
Programming Language and Environment", IEEE Transactions on Acoustics, Speech and
Signal Processing, Volume 38, No. 11, November 1990, pp. 2001-2003.

4. Marshall, T.G., Jr., "A Matlab/TMS320/TMS340 Image Processing Environment", 1992 IEEE
International Symposium on Circuits and Systems,IEEE Cat. No. 92CH3 139-3, Volume 5,1992,
pp. 2505-2508.

5. Morgado, A.M.L.S., Domingues, J.P.P., Loureiro, C.F.M., Assuncaao, J.M.V., and Correia,
C.M.B.A., "Data Acquisition and Signal Processing System Based on TMS320C50 and on a
IMSAlOO Processing Cascade", 6th Mediterranean Electrotechnical Conference Proceedings,
IEEE Cat. No. 91CH2964-5,Volume 1, 1991, pp. 340-342.

6. Pfeiffer, E., and Disch, J., "Using Ada with Embedded DSPs", Embedded Systems
Programming, Volume 6, No. 12, December 1993, pp. 32-35,38,4&41.

7. Prandolini, R., and Sridharan, S., "VLSI Implementation of a Block Floating-Point Coprocessor
for the TMS320 Fixed-Point Digital Signal Processor", 7th Australian Microelectronics
Conference Proceedings, 1988, pp. 33-40.

8. Reichler, T., Hartimo, I., and Jaatinen, J., "Automatic Signal Processor Code Generation: Matrix
Reduction-Based Module Optimization", 1990 IEEE International Symposium on Circuits and
Systems, IEEE Cat. No. 90CH2868-8, Volume 4, 1990, pp. 2901-2904.

9. Robillard, J., "Telecommunications Interfacing to the TMS32010, Digital Signal Processing
Applications With the TMS320 Family, Volume 1, 1987, pp. 383-413.

10. Tomasovic, L., and Marcek, A., "Experimental Module with TMS320C25 Processor",
Elektrotechniclzy Casopis, Volume 44, No. 12, 1993, pp. 373-375.

	1994 Telecommunications Applications With the TMS320C5x DSPs.tif
	2558539-9721 revision J 199410 TMS320C3x User's Guide.tif
	SPRU011E 199701 TMS320 DSP Development Support Reference Guide.tif

